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Abstract—Numerous reinforcement learning (RL) algorithms
have been introduced to resolve challenging tasks like game
playing, natural language processing, and control. Particularly,
RL can be used to find a good policy for control systems for which
the optimal control sequence is difficult to find by analytical
methods. This paper compares RL and analytical methods for
optimal control in an inverted pendulum environment. Dynamic
programming (DP) and model predictive control (MPC) are
considered for the analytical methods. The control results of RL,
DP, and MPC are qualitatively and quantitatively compared in
terms of total reward, state response, and control sequence to
investigate the relationships between them. Because they have
similar problem formulations, the relationships can be explained
by RL parameters: discounting factor and exploration rate.
This comparative study is expected to provide insights to those
studying RL algorithms and optimal control theories.

Index Terms—Optimal Control, Reinforcement Learning, Dy-
namic Programming, Model Predictive Control

I. INTRODUCTION

Recently, there has been considerable research interest in
reinforcement learning (RL) to address challenging control
problems characterized by complex dynamics and multiple
constraints. This is because RL uses a model-free approach;
a policy (i.e., control law) is trained based on experience
obtained through interactions with the environment. The ana-
lytical model is not explicitly used in the training process but is
contained in the environment. Using the model-free approach
differentiates the RL from analytical optimal control methods
that explicitly use the analytical model to solve optimal control
problems.

Nonetheless, RL shares some fundamental concepts and
principles with analytical optimal control methods (e.g.,
dynamics programming (DP) and model predictive control
(MPC)), because RL’s origins can be traced back to the
principles of optimal control theory. Several prior studies
have explored the relationships between RL and the analytical
optimal control methods. In [1], DP’s cost function and control

law is compared with the value function and optimal policy
of Q-learning. In [2], [3], MPC and Deep Q-Networks (DQN)
are compared in terms of the cost function structure, constraint
satisfaction, and trade-off between performance and cost.
However, as per the authors’ knowledge, a comprehensive
comparative study encompassing RL, DP, and MPC has not
been conducted yet.

This paper investigates the relationships between RL and
the two analytical optimal control methods, DP and MPC,
through a comprehensive comparison of their control results
based on total cost (or reward), state response, and control
sequence. The comparative study is conducted within the
widely recognized inverted pendulum environment. The re-
lationships between methods are primarily explained through
RL parameters: the discounting factors and exploration rate.

II. ENVIRONMENT

A. Inverted Pendulum Environment

The inverted pendulum problem is a classic control prob-
lem, widely recognized in control theory and reinforcement
learning. The main objective of this environment is to achieve
the optimal regulation of the pendulum by swinging it to the
upside.

Fig. 1. Inverted Pendulum Environment.
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The environment is depicted in Fig. 1. The system dynamics
are as follows:[

θk+1

θ̇k+1

]
=

 θk + θ̇kTs

θ̇k +

(
3g
2l sin(θk) +

3τ
ml2

)
Ts

 = h(θk, θ̇k, τ),

(1)
where θ is the angle, θ̇ is the angular velocity, Ts is the
sampling time, g is the gravitational acceleration, l is the rod
length, τ is the torque, and m is the rod mass.

The control problem of swinging up the pendulum can be
formulated as an optimal control problem, outlined as follows:

Find uk, k ∈ [0, N − 1]

to minimize J =

N−1∑
k=0

lk =

N−1∑
k=0

∥xk∥2Q + ∥uk∥2R

subject to
xk+1 = h(xk, uk)

|θ̇| ≤ θ̇max

|u| ≤ umax

(2)

where x = [θ, θ̇]T is the state, u = τ is the control input
(or action), Q is a diagonal matrix with the entries 1 and 0.1
and scalar R is 0.001 (i.e., the cost function is lk = θ2k +
0.1θ̇2k +0.001τ2k ). The parameters used to define this problem
are selected the same as in [4] and listed in Table I.

Despite the cost function being represented in a convex
quadratic form, the problem remains a nonconvex optimization
challenge due to the presence of nonlinear system dynamics.
In addition, the constraint on the control input may prevent
the pendulum from reaching the target position (i.e., θ = 0)
with one swing; the anticipated strategy involves utilizing
multiple swings to achieve sufficient kinetic energy. Therefore,
this problem is challenging to solve using analytical optimal
control methods.

III. THEORETICAL BACKGROUND

A. Analytical Optimal Control Methods

The analytical optimal control methods can be used to find
the optimal or suboptimal control law if the system model is
known. Among them, DP [5] guarantees to provide the global
solution to optimal control problems over a time horizon,
such as (2). Nonetheless, DP is not well-suited for real-time
control law because of its challenging implementation and the
substantial computation resources it demands.

MPC [6] is considered a more practical method compared to
DP, since it addresses more compact optimal control problems.

TABLE I
SYSTEM AND CONTROL PROBLEM PARAMETERS

Parameter Value Parameter Value
m (kg) 1 l (m) 1
g (m/s2) 10 Ts (s) 0.05

θ̇max (rad/s) 8 umax (s) 2

At each time step, MPC formulates an optimal control problem
over a receding prediction horizon, which is typically smaller
than the time horizon considered in DP. Then, MPC resolves
this optimization problem to obtain the optimal sequence of
control inputs and state response.

B. RL

In the RL field, numerous methods are introduced to exceed
the performances of conventional controllers. Because RL
approximates its policy function, which corresponds to the
control law in the control theory, to an optimal policy by trial
and error method, it does not require the analytical system
model.

In particular, DQN [7] has garnered considerable attention
from researchers as a fundamental but powerful RL method.
The DQN is an extension of the Q-learning algorithm that
uses deep learning networks to estimate and approximate its
action-value function (Q-function). The Q-function is updated
by the following rule:

Q(xk, uk)←Q(xk, uk) + αr(xk, uk)

+ α(γmaxQ(xk+1, ·)−Q(xk, uk)),
(3)

where r is the reward earned at each step, γ is the discounting
factor, and α is the learning rate.

Two representative hyperparameters of DQN are the dis-
counting factor γ and the exploration rate ϵ. Using the dis-
counting factor ranging from 0 to 1, the total reward that the
agent has earned in an episode is discounted as follows:

Gk =

N−1∑
k=0

γk−1rk(x, u) (4)

A low value of the discounting factor causes the agent to be
attracted to instant rewards, and a high value makes future
rewards more attractive. Additionally, selecting a discounting
factor smaller than 1 ensures the total reward is finite.

The exploration rate makes the agent explore the entire en-
vironment to evaluate its Q-function through random actions.

C. Relationship between Optimal Control Theory and RL

In the optimal control theory and RL, the targets to minimize
and maximize are the total cost and total reward, respectively.
If the discounting factor is 1, the total reward of RL is in the
same form as the total cost of the optimal control problem as
follows:

Gk =

N−1∑
k=0

rk, J =

N−1∑
k=0

lk. (5)

This means that the DQN with a discounting factor close
to 1 can approximate its policy to the global optimal policy
obtained by DP.

On the other hand, using a low gamma can make the RL
agent short-sighted, which is similar to using a short prediction
horizon in MPC. This is because the discounting factor reduces
the values of future rewards as the far future is not considered
in MPC with a short prediction horizon.
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IV. EXPERIMENT

The experiment was designed to investigate the relationships
mentioned in Section III-C. The inverted pendulum, initially
located at x0 = [3, 0]T , was controlled by two analytic optimal
control methods, DP and MPC, and RL. DQN algorithm
was used to implement RL. The MPC used the prediction
horizon of 50, which was the maximum value for reasonable
computing time, and utilized the linearized system at its
current state instead of its original nonlinear dynamics. The
hyperparameters of DQN were selected as in Table II. In
addition, various combinations of the discounting factor and
the initial exploration rate were examined for DQN The ex-
ploration rate decayed from each initial value to 0.2 during the
first 250 episodes. The action space of DQN was discretized
into 41 actions. The performance of DP, MPC, and DQN was
evaluated based on the state response, control sequence, and
total cost.

A. Analytical Optimal Control Methods

Figure 2 illustrates the results of the DP and MPC con-
trollers. The DP solution shows the optimal control sequence
that efficiently swings up the pendulum counter-clockwise in
approximately 60 steps. However, the MPC controller attempts
to swing the pendulum clockwise, even though the torque is
not sufficient to make a move in clockwise. This behavior

TABLE II
COMMON DQN HYPERPARAMETERS

Hyperparameter Value
Train Episode 1000

Batch Size 128
Replay Buffer Size 10000

Learning Rate 1e-4
Hidden Layer Number 1

Nodes per Layer 128

0 50 100 150 200

0

2

4

6

 (
ra

d
)

0 50 100 150 200

-2

-1

0

1

2

 (
N

m
)

DP MPC

Fig. 2. Comparison of DP and MPC.

is attributed to the limited prediction horizon for feedback
control, preventing the controller from discovering a control
solution that efficiently utilizes gravity. The MPC controller
is expected to require more than 50 steps to achieve a control
sequence like the DP controller.

B. DQN with Various Discounting Factors

To examine the effect of the discounting factor, DQN agents
are trained with discounting factors of 1, 0.75, and 0.5. The
exploration rate of all agents, which decays to 0.2 during 250
episodes has an initial value of 0.99. As shown in Fig. 3,
the agent with a discounting factor 1 showed the control
result that is the closest to the optimal result obtained by DP.
Conversely, agents with discounting factors of 0.5 and 0.75
exhibited behavior similar to the control sequence obtained
by MPC. This observation aligns with the explanation in
Section III-C. The agent’s preference for immediate rewards
leads to swinging up the pendulum in a clockwise direction.
A similar result was reported in [8].

The control results obtained using discounting factors of 1,
0.95, and 0.9 are shown in Fig. 4. The lower the discounting
factor is, the slower the state response is. This is because
immediate rewards are more appreciated when using a low
discounting factor.

C. DQN with Various Exploration Rates

Figure 5 shows the control results obtained with various
initial values of the exploration rate. Notably, the agent with
zero exploration rate, which exclusively took greedy actions
without exploration, achieved the control result closest to DP.
It is because the initial state space of the pendulum coincides
with the entire state space. Consequently, even though the
agent took greedy actions, it was possible to estimate informa-
tive state and action values accurately and thus approximate
the Q-value function close to the optimal policy.
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Fig. 3. Comparison of DP and DQN with discounting factors of 1, 0.75, and
0.5.
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Fig. 4. Comparison of DP and DQN with discounting factors of 1, 0.95, and
0.9.
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Fig. 5. Comparison of DP and DQN with various initial values of the
exploration rate.

TABLE III
COMPARISON OF TOTAL COSTS

Case Name Total Cost Case Name Total Cost
DP 314.167 MPC 1494.016

DQN (γ: 1.00) 345.242 DQN (ϵ: 0.99) 345.242
DQN (γ: 0.75) 1518.782 DQN (ϵ: 0.50) 339.165
DQN (γ: 0.50) 1521.538 DQN (ϵ: 0.00) 352.418
DQN (γ: 0.95) 360.987 DQN (γ: 0.90) 386.856

D. Comparison of Total Costs

Table III shows the total cost of each control scheme. The
global optimal solution obtained by DP achieved the lowest
total cost. The DQN agent with a discounting factor of 1 and
zero exploration rate achieved the second lowest total cost.
This DQN agent is expected to have a total cost closer to that

of DP when the Q-function is more accurately approximated to
the optimal policy with a deeper network. On the other hand,
cases where the pendulum cannot be successfully swung up,
such as MPC and DQN cases with low discounting factors,
demonstrated total costs exceeding 1000.

E. Differences in Control Sequences

As can be seen in Figs. 3, 4, and 5, the control sequences
of all DQN agents exhibited a bang-bang control law pattern
once reaching the target position (θ = 0). One of the main
reasons for this is that the changing rate of actions was not
considered in the training. The bang-bang pattern is expected
to be removed by incorporating a penalty term for the changing
rate of actions in the reward function. By contrast, DP did
not show the bang-bang pattern even though the charging
rate of control inputs was not considered. This is because
DP solved the optimal control problem analytically; thus,
reasonable behavior was obtained.

While the bang-bang control law did not directly affect the
total reward in the RL training process, it could be an issue
when applying this policy to the real-world system. High-
frequency control inputs are often undesired for hardware con-
trollers, as they can cause stress and inefficiency. Regulating
the changing rate of actions is essential for ensuring safe and
efficient control in real-world applications

V. CONCLUSION

This paper investigated the relationships between the an-
alytical optimal control methods, DP and MPC, and RL.
The similarity of RL to DP and MPC was explained based
on how much future rewards were appreciated using the
discounting factor, a hyperparameter of RL. The effect of
another hyperparameter of RL, the exploration rate, was also
investigated. The experiment demonstrated that 1) the DQN
agent with a discounting factor of 1 showed a control result
close to the optimal control sequence obtained by DP, and
2) the DQN agent with a lower discounting factor showed a
similar control result to MPC. An interesting finding was that
the DQN agent finds a better policy without exploration than
with a nonzero exploration rate because the initial state space
of the pendulum coincides with the entire state space.

Understanding the relationship between the analytic op-
timal control methods and RL is crucial for unifying the
two approaches for optimal control. Future work concerns
deeper analysis of the relationship between the two approaches
and developing integrated methodologies that leverage the
advantages of each approach.
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