Extended State Observer Based Stator Flux Linkage
Estimation of Nonlinear Synchronous Machines

I%* Seunghun Jang
School of Mechanical Engineering
Gwangju Institute of Science and Technology
Gwangju, Republic of Korea
shjang7071 @gm.gist.ac.kr

3" Christoph M. Hackl

Laboratory for Mechatronic and Renewable Energy Systems (LMRES)

HM Munich University of Applied Sciences
christoph.hackl@hm.edu

Abstract—Synchronous machines (SMs) represent nonlinear
dynamical systems with stator flux linkages being crucial for
controller design. Among the developed methods for flux linkage
estimation, the disturbance observer-based flux linkage estimator
(DOB-FLE) is recognized as the state-of-the-art. However, DOB-
FLE faces challenges in ensuring exponential convergence during
transient conditions. To address this, this paper introduces
an extended state observer-based flux linkage estimator (ESO-
FLE), which represents an advancement over DOB-FLE. This
novel approach utilizes extended states to model the nonlinear
disturbance term as time-varying ramp signals, offering a degree
of freedom compared to the constant assumption imposed for
DOB-FLE and allowing for the estimation of both the extended
states and the flux linkages through an ESO. Simulation results
from a 35-kW SM drive demonstrate that ESO-FLE achieves
exponential performance under transient conditions compared
to DOB-FLE.

Index Terms—Extended state observer, disturbance observer,
nonlinear synchronous machines, stator flux linkage, transient
performance

I. INTRODUCTION

Synchronous machines (SMs) represent dynamical systems
with nonlinear stator flux linkages. Accurate knowledge of the
stator flux linkages is crucial to designing high-performance
controllers for SM drives. For instance, differential and secant
inductance information is used to design current controllers
[1], [2] and optimal reference generators [3], [4], respectively.
The flux linkage information itself can be utilized to predict
the future behavior of the SM for model predictive control
(MPC) [5].

The stator flux linkage maps can be obtained offline through
identification experiments conducted across the entire operat-
ing range [6], [7]. However, this offline identification cannot
deal with real-time parameter changes in SMs caused by aging,
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degradation, or abnormal operations, such as temperature rise
or demagnetization.

Several studies present online estimation methods for the
stator flux linkages. The stator flux linkages can be easily
calculated by integrating the flux linkage dynamics defined in
the a-( frame, but the integration results include integration
errors. In [8], a high-pass filter was applied after the integration
to remove the integration errors. This method was simple
and did not use any SM parameter information, but the
filter distorted the frequency response, particularly in the low-
frequency region. Another simple online estimation method
is to adopt the steady-state assumption for the flux linkage
dynamics defined in the rotating d-q frame and to calculate
the flux linkages directly from the steady-state model [9], [10].
The high-frequency current injection has recently been adopted
for the stator flux linkage estimation [11] and has shown satis-
factory steady-state performance. However, these approaches
could not guarantee sufficient transient performance. Using a
state observer, such as sliding mode observers [12] or extended
Kalman filters [13], was also proposed for online flux linkage
estimation, but these observers were designed based on prior
knowledge of machine parameters, which is difficult to obtain
without accurate knowledge of the stator flux linkages.

Recently, online flux linkage estimators have been pro-
posed, which do not require accurate knowledge of machine
parameters but provide remarkable estimation performance.
In [14], a disturbance observer-based flux linkage estimator
(DOB-FLE) was proposed, which could estimate the flux
linkages without knowing the accurate value of the inductance
matrix, with the help of the DOB estimating the nonlinear
disturbance term. An advanced o-3 frame-based estimator was
presented in [15], where integration errors were estimated by a
linear state observer and compensated for in the time domain,
which differed from using a frequency-domain approach. Both
methods presented in [14] and [15] offered remarkable esti-
mation performance even using inaccurate nominal machine
parameters. However, they struggled with ensuring exponential



convergence during transient states, and their transient perfor-
mance deteriorated when using nominal parameters that differ
significantly from the true parameters.

With this background, this paper presents an extended state
observer-based flux linkage estimator (ESO-FLE), an advance-
ment over DOB-FLE with improved transient performance.
The key difference between the proposed ESO-FLE and DOB-
FLE is that ESO-FLE introduces extended states to model
the nonlinear disturbance term as time-varying ramp signals,
in contrast to the constant assumption used in DOB-FLE.
By doing so, both flux linkages and extended states can be
estimated more accurately via an ESO. The effectiveness of the
proposed ESO-FLE is numerically validated using a 35-kW
interior permanent magnet synchronous machine (IPMSM).

II. PRELIMINARIES
A. Nonlinear Synchronous Machine Model
The SM is modeled in the rotating d-g frame as follows [16]:

Aiqg(t) = ag(t) — Retaq(t) — wrd Aag(t), (1)

with zgq := [24 zq]T, z = Awu,4, stator flux linkages
Adg, Stator voltages vqq, stator currents 244, stator winding

0 —
1 0
rotor speed w,. The nonlinear flux linkages are generally
modeled by a nonlinear function of the stator currents as
Adq(t) = f(idq(t))'

The following assumptions are imposed:

resistance R, rotation matrix J := , and electrical

o The stator winding resistance R, is accurately known.

o The inverter nonlinearity and iron loss in the electrical
dynamics are neglected.

o The electrical rotor speed w, varies slowly compared to
the electrical quantities (e.g. currents or flux linkages).

B. Disturbance Observer-Based Stator Flux Linkage Estima-
tor (DOB-FLE)

DOB-FLE, presented in [14], is based on the idea of sep-
arating the nonlinear flux linkages into a linear term L o244
and a nonlinear disturbance term Ay, as follows:

Aag(t) = Lsotaq(t) + Ax,, (1), 2
which can be rearranged as follows
idq(t) = Ls,O_1 (’\dq<t) - A)\dq (t)) ) (3)

where L, o denotes a constant nominal inductance matrix.
The following state-space model is obtained by substituting
(3) into the nonlinear flux linkage dynamics (1), i.e.

}‘dq(t) = Vdq (t) — RSLS’O_1 (Adq(t) - AMq (t))
—wprJ Aggq (t)

Ax,, () =0

Gaq(t) = Lo~ " (Adg(t) — Ax,, (1)

with A4, and Axdq as states, v, as inputs, and %4, outputs.
This model is observable as shown in [14]. The linear state

“4)

observer was designed in [14] to estimate the full states
asymptotically (in steady state).

However, this model assumes Axdq (t) =0 (e, Ax,, (1) is
constant), which is only true in the steady state because the
disturbance term, defined by

Ax,, (1) = Xag(t)(= F(24q(t))) — Lsotag(t), (S

is a function of the stator currents. Therefore, the flux linkage
estimation cannot converge during transient states and even
may have a large transient error when using an inaccurate
nominal inductance matrix, as the nonzero A Mg, (1) term acts
as a time-varying external quantity.

ITII. EXTENDED STATE OBSERVER-BASED FLUX LINKAGE
ESTIMATOR (ESO-FLE)

This section presents ESO-FLE, which is an improved
version of DOB-FLE with enhanced transient performance.
The key idea is to assign non-constant dynamics for Ay, by
introducing an (additional) extended state.

A. Extended State-Space Model

The extended states 14, is added to the nonlinear disturbance
dynamics as follows

A, (1) = Lag(t)
Laq(t) = 0.

The extended states are regarded as constant terms, thereby
making the nonlinear disturbance terms behave like ramp
signals with constant slopes. This model is more flexible than
regarding the nonlinear disturbance term as constant.

An extended state-space model is obtained by replacing the
nonlinear disturbance dynamics in (4) with (6), i.e.

(6)

{a‘s(t) = A(wr(1))(t) + Bul(?) -
y(t) = Cx(t)
with
xr .= [Adq A)\dq ldq]T,
__RSLS,O_l - Wr(t)J RSLS,O_l O2><2
Aw, (1)) := 0252 02 I, |,
L 02><2 02><2 02><2
1L
B:= |03x2|,C:=[Lso""' —Lso " Oaxs],
_O2><2

where x denotes the state vector, and, A(w,), B and C rep-
resent the system, input and output matrices, respectively. To
analyze whether the states of system (7) are fully observable,
the observability matrix is analyzed (for constant w,.), i.e.

&
CA(w,)
CA (Wr>2 ) ®)
CA(w,)"
which is evaluated using the first three rows of O(w,.) for
the simplicity. Consequently, the observability matrix has full
rank (i.e., O(w;) = 6) if w, # 0, and the state x is (locally)
fully observable.

O(wr) =



System

Extended State Observer

Fig. 1. Observer block diagram for the proposed ESO-FLE.

TABLE I
SPECIFICATIONS OF THE IPMSM DRIVE
Parameter Value
Base speed 2000 rpm
Maximum torque 180 Nm
DC-link voltage 325V
Maximum stator current 350 A
Rotor Inertia 0.1234 kgm?
Number of pole pairs 8
Stator winding resistance (Rs) 10.9 mQ2

B. Extended State Observer Design

A linear (time-varying) extended state observer for the
model (7) is designed as follows

a(t) = A(wr(t))2(t) + Bu(t) + F(y(t) — (1)) ©)
y(t) = Cx(1),
where & and ¢ represent the estimates of «, and y and F' is
the feedback gain matrix dependent on the electrical angular
rotor velocity w,.. The estimation error dynamics are obtained
by subtracting (9) from (7) leading to

&(t) = [A(w,) — FCe(t), (10)

where e := x — & denotes the estimation error. If the matrix
A(w,) — FC is Hurwitz (with eigenvalues having negative
real parts), the estimation error will converge exponentially
to zero (for constant w,). To determine the observer gain
matrix F' for a MIMO system, a robust pole assignment
method [17] is utilized to place the system poles at the desired
(stable) eigenvalues, which can be easily achieved by using the
MATLAB command "place" to calculate the gain matrix F'.

IV. VALIDATION

A. Setup

The proposed ESO-FLE was validated using MATLAB/
SIMULINK simulation, built based on the ‘Three-phase
PMSM Traction Drive’ example provided by Math-
Works. A 35-kW IPMSM drive, whose specifications and flux
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Fig. 2. Nonlinear flux linkage maps of the IPMSM. (a) d-axis and (b) g-axis.

linkage maps are listed in Table I and shown in Fig. 3, respec-
tively, was controlled by finite control set MPC [18] to track
the d-q axis current references, respectively. The numerical
reference generator presented in [19] was utilized to convert
a torque command into current references using lookup table
data for the d-q axis inductances (Lg4, Lg) and the permanent
magnetic flux linkages (¥,,,) of the synchronous machine. The
overall control block diagram and state observer are shown in
Fig. 3. The feedback gain matrix F' was designed to make
the (stable) eigenvalues of matrix A(w,) — FC became 628
rad/s at a mechanical speed of 500 RPM. The bandwidth of
the desired eigenvalues was selected to be approximately 100
Hz, which is about twice as large as the settling time (50 Hz)
of the torque reference command, considering the estimation
performance.

The simulative validation consists of two parts. For the
first part (see Section IV-B), the performance of the proposed
ESO-FLE was examined while controlling the torque ranging
from -180 to 180 Nm within a mechanical speed range from
200 to 1300 RPM. The nominal inductance matrix, which
can be chosen arbitrarily, is defined by the secant inductance
values along the d-g axis at zero current, placed as diagonal
elements, with all off-diagonal elements set to zero (i.e.,
L.o = [°5° o%)mH). For the second part (see Section
IV-C), ESO-FLE was compared with DOB-FLE, under the
condition that a torque command increased from 0 to 180
Nm within 0.02 s at a mechanical speed of 500 RPM. The
feedback gain matrix of DOB-FLE was also selected so that
it had the same eigenvalues at S00 RPM as ESO-FLE. The
nominal inductance matrix was set to Ly = [*0* ,,]mH,
which is half of the value defined in the first part, for both
ESO-FLE and DOB-FLE to simulate an adverse scenario.

B. Validation of the Proposed ESO-FLE

Figure 4 shows the flux linkage estimates, their estimation
eITors €y := Agq — j\dq, and the operating conditions for the
proposed ESO-FLE. At t = 0.05 seconds, when the torque
command starts increasing to 180 Nm, a large spike-like esti-
mation error occurs during the transient states. This is because
the observer gain matrix F' was designed for a constant speed
of 500 rpm, causing the observer gain to be sensitive in the
low-speed region, affecting the estimation performance. Above
200 RPM, the flux linkage estimates closely tracked their
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Fig. 3. Control block diagram.
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Fig. 4. Flux linkage estimates of the proposed ESO-FLE.

true values under dynamic operating conditions across a wide
operating range of torque and speed. The estimation error was
nearly identical in both transient and steady states, suggesting
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Fig. 5. Comparison of the proposed ESO-FLE and DOB-FLE. (a) Flux

linkage estimates. (b) The corresponding estimation error norm ||ey ||

that incorporating the extended state into the state-space model
effectively enhanced the transient estimation performance.

C. Comparison of ESO-FLE and DOB-FLE

Figure 5a shows the simulation results for the comparison
between ESO-FLE and DOB-FLE, demonstrating that ESO-
FLE exhibits an improved transient performance compared to
DOB-FLE. This enhancement can be attributed to ESO-FLE’s
approach of treating the nonlinear disturbance term as time-



varying ramp signals, unlike DOB-FLE which assumes these
disturbances to be constants.

Figure 5b shows the estimation error norm ||ey|| between
ESO-FLE and DOB-FLE, representing the quantitative estima-
tion performance. Because the finite control set MPC method
directly determined the d- and g-axis voltage references for
the d- and g-axis current references, respectively, it seems that
both ESO-FLE and DOB-FLE included significant switching
ripples in their estimation error norms. However, it is evident
that only the estimation error of ESO-FLE decreased during
transient states. Consequently, it is demonstrated that the
proposed method performs well in both steady and transient
states even with inaccurate nominal inductance.

V. CONCLUSION

This paper introduced ESO-FLE, an enhanced version of
DOB-FLE, with the latter recognized as the state-of-the-art
method for online flux linkage estimation. The main contri-
bution was introducing extended states to accurately model
the nonlinear flux linkage dynamics, treating the nonlinear
disturbance term as time-varying ramp signals. This differs
from DOB-FLE, which treats the nonlinear disturbance term
as constants. Simulation results using a 35 kW IPMSM drive
demonstrated that ESO-FLE outperformed DOB-FLE during
transient conditions for flux linkage estimation under varying
operating conditions. Future research will focus on experi-
mental validation of the proposed method, with a particular
emphasis on addressing non-ideal factors such as inverter
nonlinearities.
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