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Abstract—This paper investigates the concept of using a neural
network (NN)-based approach for the nonlinearity estimation
of voltage source inverter (VSI) in synchronous machine (SM)
drives. The proposed scheme utilizes an NN with one hidden
layer to model the VSI nonlinearity, accompanied by an adaptive
law that ensures stability and bounded weights during the
NN’s update process. Assuming known stator flux linkages, the
study primarily evaluates the feasibility of applying NN for this
estimation. Simulation results from a 35 kW SM drive indicate
that the proposed estimator successfully tracks the actual value
of the VSI nonlinearity, demonstrating its efficacy.

Index Terms—Neural network (NN), online estimation, volt-
age source inverter (VSI), synchronous machine (SM), system
identification

I. INTRODUCTION

Voltage source inverters (VSI) are critical in the operations
of synchronous machine (SM) drives, enabling the conversion
of DC to AC power with adjustable magnitude and frequency.
This adaptability is fundamental for precise control across
various applications, from industrial machinery to renewable
energy systems. However, the inherent nonlinearity of VSI,
arising from switching delays, dead time, and saturation
effects, poses significant challenges, affecting control per-
formance and system stability [1]. Accurate estimation and
compensation of these nonlinearities are crucial for enhancing
the performance and reliability of SM drives.

VSI nonlinearity is typically modeled in the abc frame,
using sign functions of stator currents scaled by their ampli-
tudes. Conventional methods for VSI nonlinearity estimation
suggested identifying the amplitudes using recursive least
square [2], heuristic optimization methods [3]–[5], current
injection [6], [7], harmonic components [8]–[10], or adaptive
method [11]. Nonetheless, empirical studies [12], [13] have
demonstrated that VSI nonlinearities are more accurately rep-
resented by continuous functions with saturation. This insight

This work was supported by Electronics and Telecommunications Re-
search Institute (ETRI) grant funded by the Korean government. [24ZD1160,
Regional Industry ICT Convergence Technology Advancement and Support
Project in Daegu-GyeongBuk (Mobility)].

indicates the necessity for a more generalized model that
estimates the VSI nonlinearity directly.

This paper introduces a novel method that approaches VSI
nonlinearity as a singular function estimated via a neural
network (NN) with one hidden layer. This approach moves
beyond traditional parameter-centric models to a more holistic
representation that encompasses the continuity and saturation
inherent in VSI nonlinearity. An adaptive law is derived for the
NN’s update process, ensuring stability and bounded weights.
Assuming known stator flux linkages, the study primarily
evaluates the feasibility of applying NN for this estimation.
Simulation results from a 35 kW SM drive demonstrate the
effectiveness of the proposed estimator in accurately tracking
the actual VSI nonlinearity, showcasing its potential to signif-
icantly improve control accuracy and efficiency in SM drives.

II. PRELIMINARIES

A. SM Model

The SM can be expressed in the rotating dq frame as
follows:

λ̇dq(t) = vdq(t)− ωrJλdq(t)−Rsidq(t),

Te(t) = 1.5P iTdq(t)Jλdq(t),
(1)

with zdq :=
[
zd zq

]T
, z = λ, v, i, stator flux linkages λdq ,

stator voltages vdq , stator currents idq , output torque Te,
number of pole pairs P , stator winding resistance Rs, rotation

matrix J :=

[
0 −1
1 0

]
, and electrical rotor speed ωr. In this

paper, the following assumptions are made:
• The stator winding resistance Rs is accurately known.
• The iron loss in the electrical dynamics is neglected.
• The electrical rotor speed ωr varies slowly compared to

electrical quantities.

B. VSI Nonlinearity

The nonlinear effects of VSI, such as the dead time, turn-on
delay, turn-off delay, and voltage drop of power devices, cause
a mismatch ∆z between the voltage references provided to the
VSI v∗

z and the actual output voltages produced by the VSI
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vz (i.e., ∆z = v∗
z − vz, z = dq or abc). Conventionally, such

voltage error is modeled in the abc frame as follows [11]:

∆abc(t) =
Verr

3

 2 −1 −1
−1 2 −1
−1 −1 2

sgn(ia(t))sgn(ib(t))
sgn(ic(t))

 , (2)

where ∆abc is the voltage error in the abc frame; ia, ib, and
ic are the a-, b-, and c-axis stator currents, respectively; and

Verr =
Tdead + Ton − Toff

Ts
Vdc +

VP + VD

2
, (3)

where Tdead is the dead time, Ton is the turn-on delay, Toff

is the turn-off delay, Ts is the sampling time, Vdc is the DC
link voltage, VP is the power device voltage drop, and VD

is the diode voltage drop, respectively. The voltage error is
expressed in the rotating dq frame as follows:

∆dq(t) =
2

3

 cos θr − sin θr
cos (θr − 2

3π) − sin (θr − 2
3π)

cos (θr − 4
3π) − sin (θr − 4

3π)

T

∆abc(t),

(4)
where θr is the electrical rotor position.

Conventional methods calculate the voltage error caused by
the VSI nonlinearity using (2) or (4). However, this calculation
demands accurate knowledge of VSI parameters to define Verr

and cannot represent actual VSI nonlinearities with saturation
effects; thus, online identification of VSI nonlinearity as a
singular function is necessitated.

III. NN-BASED VSI NONLINEARITY ESTIMATION

This section presents an NN-based VSI nonlinearity estima-
tion scheme. It is assumed that information on the stator flux
linkages is accurate to focus on the feasibility of using an NN
for online estimation of VSI nonlinearity.

A. Estimator Design

The SM dynamics (1) can be expressed as the following
state-space model:

ẋ(t) = A(ωr)x(t) +Bu(t) +∆dq(t),

y(t) = Cx(t),
(5)

with state x := λdq, input u :=
[
(v∗

dq)
T iTdq

]T
, output y :=

λdq, A(ωr) := −ωrJ , B :=
[
I2 −RsI2

]
, and C := I2.

This state-space model is rewritten as

ẋ(t) = Āx(t) +Bu(t) + ϵdq(t),

y(t) = Cx(t).
(6)

with Hurwitz matrix Ā such that the pair(C, Ā) is observable
and nonlinear term ϵdq(t) := ∆dq(t) + (A(wr)− Ā)x(t).

The VSI nonlinearity ∆dq is modeled by continuous func-
tions with saturation [12], [13]; thus, an NN with hyperbolic
tangent function as activation functions can closely approx-
imate the nonlinear term ϵdq including the VSI nonlinearity
∆dq . The NN is defined as follows:

ϵdq(t) = Wσ(V x̄(t)), (7)

with weight matrices W ∈ R2×h and V ∈ Rh×3, input vector
x̄ =

[
λT
dq θr

]T
, number of nodes inside the hidden layer h,

and hyperbolic tangent function σ. The weight matrices W
and V are unknown matrices to be estimated online but are
assumed to be bounded as

∥W ∥F ≤ WM , ∥V ∥F ≤ VM . (8)

Based on the rewritten model (6), the estimator is designed
as follows:

˙̂x(t) = Āx̂(t) +Bu(t) + ϵ̂dq(t),

ŷ(t) = Cx̂(t),
(9)

with estimated state x̂, estimated output ŷ, and estimated
nonlinear term ϵ̂dq := Ŵσ(V̂ ˆ̄x), where Ŵ and V̂ are
updated weight matrices by an adaptive law to approximate
the ideal weight matrices W and V . The estimation error
dynamics is obtained by subtracting (9) from (6) as follows:

ė(t) = Āe(t) + ϵdq(t)− ϵ̂dq(t), (10)

where e := x − x̂. The estimation error asymptotically
converges to zero with a well-designed adaptive law that
makes the term ϵdq(t)− ϵ̂dq(t) negligibly small.

Such adaptive law is proposed based on the backpropagation
as follows:

˙̂
W = −η

∂G

∂Ŵ
− ρ∥e∥Ŵ ,

˙̂
V = −η

∂G

∂V̂
− ρ∥e∥V̂ ,

(11)

with loss function G := 1
2e

Te, learning rate η, and damping
factor ρ. The first term in (11) is the backpropagation term
and the second term is the exponential modification terms to
guarantee the robustness of the adaptation [15]. This adaptive
law is intended to reduce the estimation error e by updating
the weight matrices. Zero estimation error means the nonlinear
term including the VSI nonlinearity is accurately modeled by
the NN. The terms ∂G/∂Ŵ and ∂G/∂V̂ are computed by
employing the chain rule as follows:

∂G

∂Ŵ
=

∂G

∂e

∂e

∂x̂

∂x̂

∂ϵ̂dq

∂ϵ̂dq

∂Ŵ
,

∂G

∂V̂
=

∂G

∂e

∂e

∂x̂

∂x̂

∂ϵ̂dq

∂ϵ̂dq

∂V̂
.

(12)

Because the term ∂x̂/∂ϵ̂dq is difficult to compute, this is
obtained using the static approximation (i.e. ∂ ˙̂x/∂ϵ̂dq = 0) as
follows:

∂x̂

∂ϵ̂dq
= −Ā−1. (13)

Finally, the adaptive law is rewritten as follows:
˙̂
W = −η(eT Ā−1)T σ̂T − ρ∥e∥Ŵ , (14)
˙̂
V = −η(eT Ā−1Ŵ (Ih −Π))T ˆ̄x

T − ρ∥e∥V̂ , (15)

where σ̂ := σ(V̂ ˆ̄x), Ih is the identity matrix of size h, and
Π :=diag2(σ̂).

The schematic diagram of the proposed NN-based VSI
nonlinearity estimator is depicted in Fig. 1.
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Fig. 1: Schematic diagram of the proposed NN-based VSI
nonlinearity estimator

B. Stability Analysis

To verify the stability of the proposed estimator and the
boundedness of the NN weights, the Lyapunov function is
defined as follows:

L =
1

2
eTPe+

1

2
tr(W̃ TW̃ ) +

1

2
tr(Ṽ T Ṽ ), (16)

where W̃ := W − Ŵ , Ṽ := V − V̂ , and P = P T is a
positive-definite matrix satisfying

ĀTP + PĀ = −Q, (17)

for some positive-definite matrix Q. The time-derivative of
(16) is obtained as

L̇ = −1

2
eTQe+ eTP ϵ̃+ tr(W̃ T ˙̃W ) + tr(Ṽ T ˙̃V ), (18)

where ϵ̃ := ϵ − ϵ̂. In order to simplify the stability analysis,
replace the update law of V̂ presented in (15) with

˙̂
V = −η(eT Ā−1Ŵ (Ih −Π))T sgn(ˆ̄x)T − ρ∥e∥V̂ . (19)

Substituting (14) and (19) into (18) yields the following
inequality:

L̇ ≤− 1

2
λmin(Q)∥e∥2 + ∥P ∥(2WM − ∥W̃ ∥)∥e∥

+ ∥W̃ ∥∥l∥∥e∥+ ρ(WM∥W̃ ∥ − ∥W̃ ∥2)∥e∥
+ ∥Ṽ ∥(WM + ∥W̃ ∥)∥l∥∥e∥
+ ρ(VM∥Ṽ ∥ − ∥Ṽ ∥2)∥e∥,

(20)

where l := ηĀ−T and λmin(Q) is the minimum eigenvalue
of matrix Q. The following condition on the estimation error
e guarantees the negative semi-definiteness of L̇:

∥e∥ > R :=
2(2∥P ∥WM + (ρ−K2

1 )K
2
2 + (ρ− 1)K2

3 )

λmin(Q)
,

(21)
where K1 := ∥l∥/2, K2 := (∥P ∥ + ∥l∥ + ρWM )/(2(ρ −
K2

1 )), and K3 := (∥l∥WM + ρVM )/(2(ρ− 1)). L̇ is negative
semi-definite outside the ball with radius of R. Therefore, the
proposed estimator is stable and has bounded weight matrices.

TABLE I
SPECIFICATIONS OF THE IPMSM DRIVE

Base speed 2000 RPM
Maximum torque 180 Nm
DC-link voltage (Vdc) 325 V
Sampling time (Ts) 25 µs
Number of pole pairs (P ) 8
Stator resistance (Rs) 10.9 mΩ
Dead time (Tdead) 1 µs
Voltage drop of the diodes (VD) 0.8 V
Voltage drop of the power devices (VP ) 0.5 V

(a) (b)

Fig. 2: Flux linkage maps of the IPMSM. (a) d-axis and (b)
q-axis

IV. SIMULATION

The proposed NN-based VSI nonlinearity estimator was
validated using MATLAB/SIMULINK simulation, built based
on the ‘Three-phase PMSM Traction Drive’ exam-
ple provided by MathWorks. A 35-kW interior permanent
magnet SM (IPMSM) drive was used in the simulation, whose
specifications and stator flux linkage maps are listed in Table
I and shown in Figure 2. The turn-on delay Ton and turn-off
delay Toff were neglected. The IPMSM drive was controlled
by PI controllers to track the current references. A numerical
reference generator presented in [14] was used to convert
a torque command into the current references. The torque
command linearly increased from 0 to 180 Nm during 0.02 s
at a mechanical speed of 500 RPM. The estimator parameters
were selected as follows: h = 16, η = 12.5, ρ = 10−5, and

Ā =

[
−104 −400
400 −104

]
.

Figure 3 presents estimated states (i.e., stator flux linkages)
of the proposed estimator, where the VSI nonlinearity is
estimated by the NN and compensated, and estimated states
calculated without the VSI nonlinearity compensation. Clearly,
the estimated states with the compensation converged to the
true states within 0.005 s. In contrast, the estimated states
without the compensation did not converge to the true states.
Figure 4 presents the norms of the NN’s weight matrices dur-
ing the update process, which was verified to be bounded. The
estimated VSI nonlinearity obtained by the proposed method
is compared with the true value and the estimated value
calculated by the conventional method [11], in Fig. 5. This
comparison verified that the proposed method guaranteed to
closely estimate the true value, while the conventional method
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Fig. 3: True and estimated stator flux linkages.

(a) (b)

Fig. 4: Norms of weight matrices. (a) ∥W∥F and (b) ∥V ∥F
.

failed to model the true tendency due to using predefined sign
functions. The computation time histogram of the proposed
method is shown in Fig. 6. The computation time ranged
from 5 to 6 µs, demonstrating the real-time capability of the
proposed method.

V. CONCLUSION

This paper has presented an NN-based estimator for VSI
nonlinearity. The primary contributions are twofold: (i) the
development of an analytical expression for VSI nonlinearity
using an NN, and (ii) the formulation of an adaptive law
that ensures stability and maintains bounded weights within
the NN. Simulation results involving a 35 kW IPMSM drive
have confirmed that the proposed estimator can accurately
track the true VSI nonlinearity while keeping the NN weights
bounded. This study serves as a preliminary test to assess the
feasibility of employing an NN to estimate VSI nonlinearity
online, assuming accurate stator flux linkage information is
available. Future research will aim to simultaneously estimate
VSI nonlinearity and stator flux linkages, with experimental
validation planned. One approach could involve integrating the
proposed method with the extended state observer-based stator

Fig. 5: Estimated VSI nonlinearity.

Fig. 6: Computation time of proposed adaptive law.

flux linkage estimator described in [16], rather than relying on
actual stator flux linkage values.
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