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Using Deep Reinforcement Learning for Dynamic Gain Adjustment of a
Disturbance Observer

Kyunghwan Choi1, Hyochan Lee1, and Wooyong Kim2

Abstract— Increasing estimation accuracy and reducing noise
sensitivity are challenging trade-offs in designing disturbance
observers (DOBs). The DOB gain tuning process for overcoming
this trade-off is not straightforward, nor does it guarantee op-
timal performance for the resulting DOBs. This paper presents
a dynamic gain DOB that intelligently adjusts its gain based
on deep reinforcement learning (DRL) to overcome this trade-
off. First, a variable gain DOB is designed by modifying the
conventional DOB. The variable gain DOB can exponentially
estimate a constant disturbance with a varying gain. Then, DRL
is used to train a dynamic gain adjuster for the variable gain
DOB. A case study demonstrated that the proposed dynamic
gain DOB increases its gain only when needed (i.e., when the
estimation error is significant) and otherwise decreases the gain
to reduce noise. Comparison with the conventional DOB of
various constant gains shows that the proposed DOB achieves
superior performance.

I. INTRODUCTION

The disturbance observer (DOB) has been widely ac-
knowledged for its ability to compensate for plant uncertain-
ties and to reject disturbances across various control applica-
tions. However, a persistent challenge has been overcoming
the trade-off between disturbance estimation accuracy and
noise sensitivity [1]. High-gain DOB settings improve distur-
bance compensation but increase noise sensitivity, potentially
degrading the overall system performance.

While there has been considerable research on disturbance
compensation by DOB approaches, less attention has been
given to suppressing the sensor noise effect, excluding [2]–
[5]. A DOB design method based on the H∞ synthesis
technique was presented in [2]; Q filter design methods for
noise reduction were presented in [3], [4]; and a combination
of DOB and a Kalman filter was discussed in [5]. In
contrast to DOB design methods [2], [3], which present only
sufficient conditions for robust stability, the DOB design
method [4] requires a necessary and sufficient condition.

There have been a few attempts to improve DOB per-
formance using optimization or deep reinforcement learning
(DRL), which differ from the conventional methods de-
scribed above. In [6], receding-horizon optimization-based
gain tuning of nonlinear DOB was proposed to balance
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disturbance estimation accuracy and noise suppression. DRL
was utilized to optimize the gains of a nonlinear DOB and
an active disturbance rejection controller in [7] and [8], re-
spectively, to improve the disturbance rejection performance.
A novel paradigm was presented in [9], where a DOB was
designed by recurrent neural networks (RNNs) and DRL was
utilized to optimize the RNNs for a target environment.

Conventional DOB design methods [2]–[4] have endeav-
ored to reduce the sensor noise effect and derive robust sta-
bility conditions. DRL-based methods [7]–[9] have focused
on improving disturbance rejection performance. However,
no prior report has investigated a method to simultaneously
resolve this trade-off by improving disturbance estimation
accuracy and reducing noise sensitivity.

In this context, this paper presents a dynamic gain DOB
that intelligently adjusts its gain based on DRL. The key con-
cept of the proposed DOB is to increase the gain only when
the estimation error is significant and to otherwise decrease
gain to reduce sensor noise effects. Thus, estimation accuracy
is improved and while noise sensitivity is simultaneously
reduced. The dynamic gain DOB is designed by modifying
the conventional DOB presented in [10], which was denoted
the constant DOB due to its exponential convergence to
constant disturbances. A case study using disturbances of
various waveforms demonstrates that the proposed DOB
achieves superior performance to that of the conventional
DOB.

The remainder of this paper is organized as follows.
Section II revisits the constant DOB as a motivational work.
Section III introduces the proposed DOB consisting of a
variable gain DOB and a dynamic gain adjuster based on
DRL. Case study results are reported in Section IV. Finally,
Section V offers conclusions and outlooks on future work.

II. MOTIVATION: A REVISIT TO CONSTANT DOB

A constant DOB is presented in [10] and used as the
basis for designing the proposed DOB. The constant DOB
is reviewed in this section.

A. Constant DOB

The system is defined as:

ẋ(t) = f(x, u, t) + Fd(t), x(0) = x0, (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input,
d(t) ∈ Rp is the disturbance, f(·) is a known function, and
matrix F is known and with rank(F ) = p. The state is



assumed to be measured, and the initial state condition x0 is
known. The reduced-order system can be expressed as

ẏ(t) = g(x, u, t) + d(t). (2)

where y(t) = F+x(t) ∈ Rp and g(x, u, t) = F+f(x, u, t) ∈
Rp.

The constant DOB is designed for the system (2) as
follows:

d̂(t) = z(t) + Ly(t), (3a)

ż(t) = −L(g(x, u, t) + d̂(t)), (3b)

with the disturbance estimate d̂(t) ∈ Rp, the DOB gain
matrix L = diag{l1, · · · , lp}, li > 0 (i = 1, · · · , p), and
z(0) = −LF+x0 ∈ Rp.

B. Error Dynamics
The error dynamics of the constant DOB are given by:

ϵ̇(t) = −Lϵ(t) + ḋ(t), (4)

where ϵi(t) = di(t)−d̂i(t) is the estimation error. Therefore,
it follows that:

|ϵi(t)| ≤ e−lit|ϵi(0)|+ (1/li) sup
0≤τ≤t

|ḋi(τ)|, (5)

where (·)i denotes the ith component of the argument
vector. The estimation characteristics are asymptotically and
exponentially stable for the initial error, while the steady-
state error depends on the envelope of the time derivative
of the disturbance. When the disturbance is constant (i.e.,
ḋi(t) = 0), the disturbance observer exactly estimates the
disturbance in the steady state.

The DOB gain li affects the estimation error in two ways:
• Determining the exponential decay rate of the initial

error (consider the first term on the right side of
inequality (5))

• Determining the suppression level of the steady-state
error (consider the second term on the right side of
inequality (5))

Therefore, in principle, the larger the DOB gain li is, the
faster the estimation error ϵi(t) decays and the lower the
steady-state error.

C. Noise Effect
In practice, state measurements contain noise as follows:

xm(t) = x(t) + w(t), (6)

where xm(t) is the measured state and w(t) is the noise
signal. When using xm(t) instead of x(t), the error dynamics
of the constant DOB are rewritten as follows:

ϵ̇(t) = −Lϵ(t) + ḋ(t)

− L(F+ẇ(t) + g(x, u, t)− g(xm, u, t)).
(7)

Clearly, the noise w(t) affects the estimation error ϵ(t) even
when ϵ(t) and ḋ(t) are close to zero. The larger the DOB gain
matrix L is, the greater the effect of noise on the estimation
error ϵ(t). When the disturbance estimate d̂(t) is used for
control, the noise component in d̂(t) is directly transferred
to the control input u(t), which is undesirable.

D. Trade-off Between Improving Estimation Accuracy and
Reducing Noise Sensitivity

Sections II-B and II-C demonstrate the trade-off between
improving the estimation accuracy and reducing the noise
sensitivity of a constant DOB. Selecting a large value for
the DOB gain li could reduce the estimation error while
simultaneously increasing the noise power in the disturbance
estimate. Many previous studies have confirmed this trade-
off exists in various forms of DOBs [1]–[4].

Therefore, finding an optimal value for the constant gain
li, which can reduce both the estimation error and noise
component, seems technically impossible. This limitation
motivated us to answer the following question: Can we
design a DOB that guarantees the minimization of both the
estimation error and the noise component?

III. DYNAMIC GAIN DOB BASED ON DRL
Addressing the above question, this study proposes a

dynamic gain DOB, which is based on a simple concept:
designing a variable gain DOB and dynamically adjusting
the DOB gain to minimize the estimation error or the
noise component depending on the operating conditions. The
variable gain DOB is designed by modifying the constant
DOB (3), as presented in Section III-A. However, designing
a gain adjustment policy is challenging; thus, the policy is
designed based on DRL, as described in Section III-B.

A. Design of Variable Gain DOB

The variable gain DOB is designed as follows:

d̂(t) = z(t) + L(t)y(t), (8a)

ż(t) = −L(t)(g(x, u, t) + d̂(t))− L̇(t)y(t), (8b)

where the DOB gain matrix L(t) = diag{l1(t), · · · , lp(t)} is
time-varying with li(t) > 0(i = 1, · · · , p), li(0) = li,0, and
z(0) = −L(0)F+x0 ∈ Rp. The DOB gain li(t) is bound by
its maximum (lmax) and minimum (lmin) values. The variable
gain DOB provides the following error dynamics:

ϵ̇(t) = −L(t)ϵ(t) + ḋ(t), (9)

which is the same error dynamics as the constant DOB (4)
except that the gain L(t) is now a variable. In this context,
it is possible to adjust the gain to reduce the estimation error
or noise component. Note that the measured state xm(t) is
used instead of the actual state x(t) when implementing the
DOB; thus, the noise component will be included in the error
dynamics (9) as in (7).

Consider a tracking control problem such that x(t) →
x∗(t), where x∗(t) is the reference signal. A tracking control
law u(t) can be designed leveraging the information from
d̂(t) as an estimate of the true disturbance d(t). Then, an
approximate state estimate at the next time step is given by:

ŷ(t+ Ts) = y(t) + Ts(g(x(t), u(t), t) + d̂(t)), (10)

where Ts is the sampling time. On the other hand, the actual
state at the next time step is approximated as:

y(t+ Ts) ≈ y(t) + Ts(g(x(t), u(t), t) + d(t)), (11)



which is measured at the next time step. Accordingly, an ap-
proximation of the disturbance estimation error is calculated
by subtracting (10) from (11) as follows:

ϵ(t) ≈ ỹ(t+ Ts)/Ts, (12)

where ỹ(t + Ts) = y(t + Ts) − ŷ(t + Ts). Equation (12) is
a noncausal estimation due to the use of y(t + Ts), which
is the state measurement at the next time step. Nonetheless,
a time-delayed calculation of (12) can be a useful criterion
for adjusting the DOB gain matrix L(t), as is explained in
detail in the following section.

B. Dynamic Gain Adjustment Based on DRL

The error dynamics (9) yield the following scalar dynam-
ics:

ϵ̇i(t) = −li(t)ϵi(t) + ḋi(t), i = 1, · · · , p, (13)

which implies that the variable gain DOB (8) operates
independently across each component of the disturbance. In
essence, the variable gain DOB comprises p scalar DOBs,
each equipped with a variable gain mechanism. As a result,
a gain adjustment policy optimized for any scalar dynamics
system can be effectively extended to the vector dynamics
system. This approach is depicted in Fig. 1. In this section,
the training system is defined as f(x, u, t) = −x(t) +
u(t), F = 1 with n = 1,m = 1, and p = 1 but can be any
other scalar dynamics. The training controller is designed as
u(t) = Kp(x

∗(t)− xm(t)) + xm(t)− d̂(t) so that the state
x(t) tracked the reference signal x∗(t) with a bandwidth
that equals the control gain Kp. Any stabilizing controller is
acceptable for training.

The amount of gain adjustment is determined by the time
derivative of the DOB gain, l̇(t), as given by the gain adjust-
ment policy. This policy is trained to be optimal by maxi-
mizing the cumulative reward utilizing the state information
contained in the observation. The deep deterministic policy
gradient (DDPG) method is adopted for training, whereby
the model learns a state-action value function (critic) and
a continuous and deterministic policy function (actor), with
each function represented by a neural network. The DRL
agent is detailed in the following.

1) Action: The action a(t) is selected as l̇(t) instead of
l(t). This is because l̇(t) is used in the variable gain DOB
(8) and l(t) can be easily obtained by integrating l̇(t) as
l(t) =

∫ t

0
l̇(τ)dτ+ l0. Obtaining l̇(t) from l(t) is much more

difficult.
The action space is defined by A = {a|a ≤ a ≤ a} with

a = (lmax−lmin)/(NTs) and a = −a, where N is a positive
integer. The lower and upper bounds are designed as above
such that l(t) reaches the maximum (or minimum) from the
minimum (or maximum) values in N time steps.

2) Reward Function: The reward function is defined by

r(t) = −ϵ2(t). (14)

to reduce the disturbance estimation error.

(a)

(b)

Fig. 1. (a) Training and (b) implementation of dynamic gain DOB based
on DRL.

3) State and Observation: The error dynamics of the
variable gain DOB (9) are rewritten as:

˙̂
d(t) = −l(t)ϵ(t) (15)

with the following DOB gain dynamics:

l̇(t) = a(t), (16)

which indicates that the state of the DOB comprises d̂(t),
l(t), a(t), and ϵ(t). Because ϵ(t) is not observable to the
agent, the term ỹ(t)/Ts in (12) is used instead. Accordingly,
the state is defined by:

s(t) = {d̂(t), l(t), a(t), ỹ(t)/Ts}. (17)



The observation is defined as follows, including the current
and past states to enrich information:

o(t) = {s(t), s(t− Ts), · · · , s(t− kTs)}, (18)

where k is the number of past states.
4) Neural Networks: Neural networks for the DDPG

agent are depicted in Fig. 1 along with the control system
as the environment, in which Input, FC, ReLU, and Tanh
represent a feature input layer, a fully connected layer,
a rectified linear unit function, and a hyperbolic tangent
layer, respectively. Each input layer has the same number
of features as its input and normalizes the input within -1
and 1. Each fully connected layer has M neurons, except
for the last layers of the actor and critic networks, whose
number of neurons equals 1. The hyperbolic tangent layer is
used to limit its output value to within -1 and 1. The scaling
layer amplifies the input value by a so that the action aj(t)
has a range defined by A.

5) Training: The proposed dynamic gain DOB shown in
Fig. 1 was implemented in the MATLAB/Simulink environ-
ment for training. The noise signal w(t) was modeled by
a band-limited white noise block with a power of 10−7.
The control gain Kp was set to 100. The parameters of the
variable gain DOB and the dynamic gain adjuster were set
as follows: Ts = 0.001 s, lmax = 1000, lmax = 10, N = 5,
k = 9, and M = 20.

The disturbance d(t) was designed as follows to describe
various waveforms:

d(t) =

 dmin (dus(t) < dmin)
dmax (dus(t) > dmax)
dus(t) (dmin ≤ dus(t) ≤ dmax)

, (19)

where dmin(= −50) and dmax(= 50) represent the minimum
and maximum values of the disturbance, respectively, and
dus(t) is the unsaturated disturbance given by:

dus(t) =

{
d0 (t < Td)
d0 +Ad sin(2πfdt+ ϕd) (t ≥ Td)

, (20)

with disturbance parameters of d0, Ad, fd, ϕd and Td. The
reference signal was defined by:

x∗(t) =

{
x0 (t < Tr)
xr (t ≥ Tr)

, (21)

where xr and Tr are the final value and step time of the
reference signal, respectively.

The dynamic gain adjuster (i.e., DDPG agent) was im-
plemented by the RL agent block and trained for 10,000
episodes with an episode length of T = 0.1 s. At the
start of every episode, parameters not predefined above
were randomly initialized from uniform distributions. These
parameters and their uniform distributions are listed in Table
I. Note that the seed of the noise block was also initialized to
implement a quasirandom noise signal. The hyperparameters
of the DDPG agent were selected as shown in Table II.

TABLE I
RANDOMLY INITIALIZED PARAMETERS FROM UNIFORM

DISTRIBUTIONS

Parameter Uniform distribution
Plant x0 [−1, 1]

Variable gain DOB l0 [10, 600]
d0 [−50, 50]
Ad [−100, 100]

Disturbance fd [0, 50]
ϕd [0, 2π]
Td [0, T/2]

Reference signal xr [−1, 1]
Tr [0, Ts]

Band-limited noise box Seed [0, 30000]

TABLE II
HYPERPARAMETERS OF DDPG AGENT

Hyperparameter Value
Actor learning rate 10−4

Critic learning rate 10−3

Discount factor 0.99
Experience buffer length 106

Minibatch size 64
Noise variance 7

Noise variance decay rate 10−4

IV. CASE STUDY

A. Setup

A case study was conducted to validate the proposed
DOB in the real environment with the pretrained agent. The
randomly initialized parameters listed in Table I were used
identically in the real environment, with the exceptions of l0
and Td, which were set to 100 and T/2, respectively. The
real system was selected by the pendulum equation, which
includes uncertain terms, as follows:[

ẋ1(t)
ẋ2(t)

]
=

[
x2(t)

− sin(x1(t))− x2(t) + u(t)

]
+ Fd(t)

(22)

with n = 2, m = 1, p = 1, and F =
[
1 1

]⊤
. The real

controller was designed based on the backstepping approach
as follows:

u(t) = sin(x1(t)) + x2(t) + e(t)− k2ϕ(t)− d̂(t), (23)

where

e(t) = x∗(t)− x1(t), (24)

ϕ(t) = x2(t)− (k1e(t)− d̂(t)). (25)

with control gains k1 > 0 and k2 > 0. The new variables
ϕ(t) denotes the error of x2(t) relative to its desirable value.
The Lyapunov function is defined as follows to demonstrate
the system’s stability:

V (t) :=
1

2
e2(t) +

1

2
ϕ2(t) +

1

2
ϵ2(t). (26)



Taking the time-derivative of V (t) yields

V̇ (t) = e(t)ė(t) + ϕ(t)ϕ̇(t) + ϵ(t)ϵ̇(t) (27)

= −
(
k1 −

1

2

)(
e(t)− k21

2k1 − 1
ϕ(t)

)2

− k3ϕ
2(t)

−
(
l(t)− 1

2

)(
ϵ(t)− 1 + l(t) + k1

2l(t)− 1
ϕ(t)

)2

+ α(t)⊤β(t), (28)

where

k3 = k2 − k1 −
k41

4k1 − 2
− (1 + k1 + l(t))2

4l(t)− 2
,

α(t) = [ẋ∗(t),−k1ẋ
∗(t), ḋ(t)]⊤,

β(t) = [e(t), ϕ(t), ϵ(t)]⊤.

If k1 and l(t) are greater than 1/2, and k1 and k2 are selected
for k3 to be positive, the following holds:

V̇ (t) ≤ α(t)⊤β(t), (29)

which indicates L2-stability for the input–output mapping of
α(t) 7→ β(t). Therefore, the system is stable if the input α(t)
is bounded. The control gains k1 and k2 were selected as 1
and 300, respectively, to satisfy the above condition in the
range of l(t).

The proposed DOB was simulated 50 times, as was the
conventional constant DOB (3) for comparison. Six different
constant gains, l = 100, 200, 400, 600, 800 and 1000, were
used for the constant DOB. Two performance indices were
defined as follows:

J1 =

∫ T

0

ϵ2(τ)dτ, J2 =

∫ T

0

((d̂(τ)− d̂∗(τ))2dτ,

where d̂∗(t) is the disturbance estimate obtained with the
same DOB, while assuming that the state measurement does
not contain noise (i.e., xm(t) = x(t)); thus, d̂∗(t) does
not contain any noise components. J1 and J2 correspond
to the disturbance estimation error and the noise component,
respectively.

B. Results and Discussion

Figure 2(a) shows the distributions of the performance
indices of the proposed DOB and constant DOB for a total
of 50 simulations. The performance indices of the proposed
DOB were distributed at small values. In contrast, depending
on the DOB gain l, the constant DOB exhibits a clear
trade-off between the two performance indices: the higher
the gain is, the lower the estimation error variance, but
the greater the noise component. In the constant DOB, no
gain value guarantees a distribution of lower performance
indices, as achieved by the proposed DOB. This statement
is clearly validated by examining the average point of the
performance indices distribution, as shown in Fig. 2(b).
The average point of the proposed DOB is lower in both
performance indices than that of the constant DOB with
l = 400, 600, 800 and 1000. Although one performance
index (J2) of the constant DOB with l = 100 and 200 is

(a)

Performance limit 

(Approximately 

Pareto front)

-15%

+109%

-25%

(b)

Fig. 2. Distribution of the performance indices of the proposed DOB and
constant DOB (a) for a total of 50 simulations, and (b) their average points.

lower than that of the proposed DOB on average, the other
average performance index (J1) is much greater. The blue
dashed line can be regarded as the performance limit of
the constant DOB, which is approximately Pareto optimal
performance. Notably, the average point of the proposed
DOB is located below the performance limit, moving toward
the utopia point off the Pareto front. The average J1 values
for both the proposed DOB and the constant DOB with
l = 600 were nearly identical, showing a reduction of 15%
compared to the constant DOB with l = 400. Conversely,
the average J2 for the constant DOB with l = 600 increased
by 109% over the constant DOB with l = 400, whereas
the proposed DOB saw a 25% reduction in J2 compared
to the constant DOB with l = 400. This indicates that the
proposed DOB effectively lowers both performance indices
by intelligently adjusting the DOB gain, in contrast to
the constant DOB, which demonstrates a significant trade-
off between the two indices when setting the DOB gain.
Additionally, it is important to note that the average J1 value
does not continue to decrease with higher gains, attributed to
the noise component’s amplification within the disturbance
estimate.

Among the total 50 simulations, two simulations were



0 0.02 0.04 0.06 0.08 0.1

-50

0

50

Constant DOB

(a)

0 0.02 0.04 0.06 0.08 0.1

-50

0

50

Constant DOB

(b)

(c)

0 0.02 0.04 0.06 0.08 0.1
0

200

400

600

800

1000
Proposed DOB

(d)

Fig. 3. Comparison of the proposed DOB and constant DOB in one
simulation. The disturbance estimates d̂(t) of the constant DOB obtained
with l = 100, 200, and 400 and with l = 600, 800, and 1000 are presented
in (a) and (b), respectively, along with the true disturbance d(t). The
disturbance estimate d̂(t) of the proposed DOB is presented in (c) along
with the true disturbance d(t). The corresponding DOB gain l(t) of the
proposed DOB is shown in (d).
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Fig. 4. Comparison of the proposed DOB and constant DOB in another
simulation. The disturbance estimates d̂(t) of the constant DOB obtained
with l = 100, 200, and 400 and with l = 600, 800, and 1000 are presented
in (a) and (b), respectively, along with the true disturbance d(t). The
disturbance estimate d̂(t) of the proposed DOB is presented in (c) along
with the true disturbance d(t). The corresponding DOB gain l(t) of the
proposed DOB is shown in (d).



selected to qualitatively compare the proposed DOB and
constant DOB. The two simulation results are shown in Figs.
3 and 4, respectively. For one simulation, the disturbance
estimates d̂(t) of the constant DOB obtained with l =
100, 200 and 400 and with l = 600, 800 and 1000 are
presented in Figs. 3(a) and 3(b), respectively, along with the
true disturbance d(t). The data show that the higher the gain
l is, the faster the estimation speed, but the more significant
the noise component. The disturbance estimate obtained with
l = 400 provided tolerable estimation performance and a
tolerable noise component, while that obtained with l = 600
provided better estimation performance but a worse noise
component. In contrast, as shown in Fig. 3(c), the disturbance
estimate of the proposed DOB had good estimation perfor-
mance, similar to the constant DOB with l = 600 and a lower
noise component than the constant DOB with l = 400. This
desirable estimation behavior, which cannot be attained using
a constant DOB, could be obtained due to the dynamically
varying gain l(t). As shown in Fig. 3(d), the gain was
approximately 200 for the constant disturbance from 0 s to
0.05 s and then increased and adjusted appropriately for the
time-varying disturbance from 0.05 s. A similar analysis can
be performed for another simulation result shown in Fig. 4.
Interestingly, as shown in Fig. 4(d), the gain rapidly increased
to 800 when a step change in the disturbance occurred and
remained low otherwise.

The qualitative comparison has demonstrated that the
proposed dynamic gain DOB increases its gain only when
necessary (i.e., when the estimation error is significant) and
decreases it otherwise to reduce noise effects. This desirable
behavior explains how the proposed DOB can operate close
to the optimal point in terms of performance indices by
overcoming the performance limit of the constant DOB (see
Fig. 2(b)).

V. CONCLUSION AND FUTURE WORK

This paper presents a dynamic gain DOB based on DRL
to solve the trade-off of conventional DOBs simultaneously
increasing estimation accuracy and reducing noise sensitivity.
The proposed DOB comprised a variable gain DOB, which
was formulated by modifying the conventional constant
DOB, and a dynamic gain adjuster, which determined the
gain of the variable gain DOB. The dynamic gain adjuster
was based on a DDPG agent, and the training frame-
work of this agent was also presented. A case study using
disturbances of various waveforms demonstrated that the
proposed DOB achieves superior performance to that of the
conventional DOB in terms of estimation accuracy and noise
sensitivity. This ideal performance was achieved because the
proposed dynamic gain DOB increases its gain only when
necessary and otherwise decreases the gain to reduce noise
effects.

The proposed DOB is anticipated to be used as a uni-
versal DOB with plug-and-play integration capabilities. For
instance, it will be possible to attach the proposed DOB to
any control system and easily enjoy its superior functionality.

The following issues need to be addressed in a future study
to realize this capability:

• Generalization of the DOB formulation to be applicable
to output-feedback systems;

• Adaptation to various levels of noise and various ranges
of sampling time.
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