
P
os
te
d
on

19
M
ar

20
24

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
71
08
50
98
.8
27
68
15
9/
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
o
u
ld

n
ot

b
..
.

A Lyapunov-based Approach to Nonlinear Programming and Its

Application to Nonlinear Model Predictive Torque Control

Kyunghwan Choi1 and Christoph M Hackl1

1Affiliation not available

March 19, 2024

1

A Lyapunov-based Approach to Nonlinear Programming and Its
Application to Nonlinear Model Predictive Torque Control

Kyunghwan Choi and Christoph M. Hackl, Senior Member

Abstract— A tuning-parameter-free and matrix-inversion-
free solution of nonlinear programming (NLP) problems is
proposed. The key idea is to design an update law based on
Lyapunov analysis to satisfy the first-order necessary conditions
for optimality. To this aim, first, the Lyapunov function is de-
fined as the summation of the norms of these conditions. Then,
the desired optimization variables and Lagrange multipliers,
which minimize the Lyapunov function the most, are found
analytically, thereby rapidly approaching the necessary condi-
tions. The proposed method neither requires tuning parameters
nor matrix inversions; thus, it can be implemented easily
with less iterations and computational load than conventional
methods, such as sequential quadratic programming (SQP) and
augmented Lagrangian method (ALM). The effectiveness of the
proposed method is applied to and validated by using it to solve
a nonlinear model predictive torque control (NMPTC) problem
in electrical drives. The results are compared with those of SQP
and ALM.

I. INTRODUCTION

Nonlinear programming (NLP) has been used in various
applications as a powerful tool for optimizing the perfor-
mance of (dynamical) systems [1]. However, solving NLP
problems is still challenging because of the lack of a general
analytical solution and the difficulty in designing effective
numerical optimization processes [2].

Typical numerical approaches for NLP are sequential
quadratic programming (SQP) and augmented Lagrangian
method (ALM) [3]. SQP solves an NLP problem effectively
when the NLP can be approximated as QPs and the iteration
starts near the optimal solution. However, SQP is com-
putationally expensive, especially for large-scale problems,
because it involves the inversion of the Karush-Kuhn-Tucker
(KKT) matrix [3]. In addition, two typical methods for SQP
to handle inequality constraints, the interior point method
and active-set method, may require a heavy computation at
each iteration and numerous iterations, respectively, when
the NLP includes many inequality constraints [3].

In contrast to SQP, ALM provides a simple but effective
way to handle inequality constraints by adding penalty terms
for the constraint violations to the objective function and by
finding the penalty terms’ weights (i.e., Lagrange multipliers)

This work was supported by Korea Research Institute for Defense
Technology planning and advancement (KRIT) grant funded by Korea gov-
ernment DAPA (Defense Acquisition Program Administration) (No. KRIT-
CT-22-087, Synthetic Battlefield Environment based Integrated Combat
Training Platform)

K. Choi is with the School of Mechanical Engineering, Gwangju In-
stitute of Science and Technology, Gwangju 61005, Republic of Korea
khchoi@gist.ac.kr

C. M. Hackl is with the Hochschule München (HM) University of Ap-
plied Sciences, Laboratory of Mechatronic and Renewable Energy Systems
(LMRES), Munich, 80335, Germany christoph.hackl@hm.edu

with a simple update law [3]. However, ALM uses multiple
tuning parameters regarding handling the constraints, such
as the barrier parameter and the constraint violation toler-
ance. Finding appropriate values for these parameters can
be challenging and may require problem-specific tuning. In
addition, ALM typically involves either the inversion of the
Hessian or the approximation of the inverted Hessian, which
is usually computationally demanding [4].

Besides SQP and ALM, most numerical approaches re-
quire (i) computationally demanding steps (such as the
inversion of the KKT matrix or the Hessian or its approxi-
mation), (ii) tuning of multiple parameters (often problem-
specific) and (iii) a large number of iterations until the
optimization reaches a satisfactory solution. Therefore, this
study presents a tuning-parameter-free and matrix-inversion-
free numerical optimization method to solve NLPs. To this
aim, a control perspective is adopted that interprets the
numerical optimization process as a dynamical system such
that typical control principles can be adopted to design
an update law without introducing tuning parameters and
utilizing matrix inversions. The key idea is to design an
update law based on Lyapunov’s second method to meet the
two first-order necessary conditions for optimality [3]. The
Lyapunov function is defined as the summation of the norms
of these two conditions. The desired optimization variables
and Lagrange multipliers (which minimize the Lyapunov
function) are analytically found which allows and guarantees
to approach the necessary conditions rapidly.

The proposed method is called Lyapunov-based Nonlinear
Programming (LBNLP). It can be implemented easily and
with less iterations and computational load than conventional
methods, such as SQP and ALM, due to its tuning-parameter-
freeness and matrix-inversion-freeness; thus, it is particularly
interesting and effective for nonlinear model predictive con-
trol (NMPC), which requires an NLP problem to be solved in
real time within a short control period. The proposed method
also allows the violation of constraints during the iteration
process as ALM does, which is another desirable feature for
NMPC with many inequality constraints. The update law of
the proposed method can be directly used as the control law
for NMPC because each iteration is at least suboptimal and
converges towards the local solution rapidly.

Previous studies, including [5], have already explored con-
trol perspectives on numerical optimization, introducing var-
ious update laws. Nevertheless, the majority of these update
laws were designed to address unconstrained optimization or
relatively straightforward constrained optimization scenarios,
such as convex problems. To the authors’ knowledge, using a

Lyapunov-based approach to solve an NLP and to implement
NMPC has not been investigated yet.

II. PRELIMINARIES

This section provides preliminaries for this study: Section
II-A defines a general formulation of NLPs, whereas Section
II-B states the necessary conditions for optimality of NLPs.
Section II-C describes SQP and ALM in more detail.

A. Nonlinear programming (NLP)

A general scalar formulation of NLP is given by

min
x
f(x) (1a)

subject to

ceqj (x) = 0, j ∈ E ⊂ N, (1b)

cini (x) ≤ 0, i ∈ I ⊂ N, (1c)

where f : Rn → R, ceqj : Rn → R and cini : Rn → R
are (at least) continuously differentiable and represent the
objective function, the equality constraints for all j ∈ E (with
dimension neq := |E|) and the inequality constraints for all
i ∈ I (with dimension nin := |I|), respectively. I and E
are two finite sets of indices for the equality and inequality
constraints, respectively. The vector x ∈ Rn comprises
the optimization variables. The goal is to find the optimal
x⋆ := argminx f(x) subject to the constraints in (1). At
least one of the functions in (1) must be nonlinear to obtain
a nonlinear optimization problem.

B. Necessary Conditions for Optimality

The Lagrangian for the NLP in (1) is defined as

L(x,λ) := f(x) +
∑
j∈E

λeqj c
eq
j (x) +

∑
i∈I

λini c
in
i (x)

= f(x) + λ⊤c(x) (2)

where λeqj and λinj are the Lagrange multipliers for the
equality and inequality constraints, respectively. For com-
pactness all multipliers and constraints are collected in
the Lagrangian multiplier vector λ := (λ1, . . . , λnc

)⊤ :=
(λeq1 , . . . , λ

in
1 , . . .)

⊤ ∈ Rnc and the constraint vector c :=
(c1, . . . , cnc)

⊤ := (ceq1 , . . . , c
in
1 , . . .)

⊤ ∈ Rnc where

nc := neq + nin

is the overall dimension of the constraints. For later, the
active set A(x) at any feasible x is introduced, which is the
union of the set E and those indices of the active inequality
constraints, i.e.

A(x) = E ∪
{
a ∈ I | cina (x) = 0

}
. (3)

One constraint qualification for the necessary conditions is
defined as follows:

Definition 1 (Linear independence constraint qualification
(LICQ) [3]). Given a feasible point x and the active
set A(x), the linear independence constraint qualification
(LICQ) holds if the set of active constraint gradients
{∇xca(x) | a ∈ A(x)} is linearly independent.

The first-order necessary conditions for optimality, which
provide the foundation for many numerical algorithms for
NLP, are defined as follows.

Theorem 1 (First-Order Necessary Conditions [3]). Suppose
that x⋆ is a local solution of (1) and that the LICQ holds
at x⋆. Then there is a Lagrange multiplier vector λ⋆ :=
(λ⋆1, . . . , λ

⋆
nc
)⊤ ∈ Rnc , such that the following conditions

are satisfied at (x⋆,λ⋆):

∇xL(x
⋆,λ⋆) = 0, (4a)

ceqj (x⋆) = 0, for all j ∈ E, (4b)

cini (x⋆) ≤ 0, for all i ∈ I, (4c)

λin,⋆i := λ⋆i+neq
≥ 0, for all i ∈ I, (4d)

λ⋆l cl(x
⋆) = 0, for all l ∈ E ∪ I. (4e)

The conditions (4) are known as the KKT conditions.
Condition (4e) implies that the Lagrange multipliers corre-
sponding to inactive inequality constraints are zero; thus, the
first condition (4a) can be rewritten by omitting the terms for
indices l /∈ A(x⋆) as follows

0 = ∇xL(x
⋆,λ⋆) = ∇xf(x

⋆) +
∑

a∈A(x⋆)

λ⋆a∇xca(x
⋆). (5)

C. Typical Numerical Approaches to NLP

SQP and ALM are two typical numerical approaches
which are described next to compare those to the proposed
method.

1) SQP: SQP is an iterative method for NLP, solving a
sequence of optimization subproblems, each of which is an
approximation of the NLP as a quadratic programming (QP).
Each subproblem is defined as follows [3]:

min
∆x[k]

f(x[k]) +∇xf(x[k])
⊤∆x[k]+

+ 1
2 (∆x[k])

⊤HL(x[k],λ[k])∆x[k] (6a)
subject to

∇xcj(x[k])
⊤∆x[k] + cj(x[k]) = 0, j ∈ E, (6b)

∇xci(x[k])
⊤∆x[k] + ci(x[k]) ≥ 0, i ∈ I, (6c)

where ∆x[k] := x[k+1] − x[k] (with actual iteration step
k ∈ N) and HL(x,λ) := ∇2

xL(x,λ) denotes the Hessian of
the Lagrangian with respect to x. As the Hessian may neither
be easy to compute nor is always positive definite within the
admissible set, alternate choices for HL, such as full quasi-
newton approximations and reduced-hessian approximations,
can be used instead [3].

The solution of (6) can be obtained by solving[
HL(x[k],λ[k]) CA(x[k])

C⊤
A (x[k]) 0

]
︸ ︷︷ ︸
=:K(x[k],λ[k])∈R(n+m)×(n+m)

[
∆x[k]
∆λ[k]

]
=

[
−∇xL(x[k],λ[k])

−cA(x[k])

]
,

(7)

for
(
∆x[k]⊤,∆λ[k]⊤

)⊤
where ∆λ[k] := λ[k + 1] −

λ[k], C⊤
A (x) := [∇xca(x)]

⊤
a∈A(x) ∈ Rm×n, cA(x) :=

[ca(x)]a∈A(x) ∈ Rm and m ≤ nc is the number of
active constraints. Each iteration k is well-defined when

the nonsingularity of the KKT matrix K(x[k],λ[k]) holds,
which is a consequence of LICQ and the positive-definiteness
of the Hessian.

SQP solves the NLP effectively when each subproblem
approximates the NLP reasonably well. However, solving
(7) involves the inversion of KKT matrix, which is com-
putationally expensive. In addition, SQP does not allow for
the violation of constraints and thus may struggle to find
a feasible solution when the NLP includes many inequality
constraints.

2) ALM: ALM is an iterative method for NLP, which
combines aspects of both Lagrange multipliers and penalty
methods to handle constraints by defining the augmented
Lagrangian function as follows [3]:

LALM(x,λ;µ) := f(x) +
∑
j∈E

λjcj(x) +
1
2µ

∑
j∈E

c2j (x)

+
∑
i∈I

ψ(ci+neq
(x), λi+neq

;µ),
(8)

with barrier parameter µ > 0 and function

ψ(t, σ;µ) :=

{
−σt+ t2/(2µ) if t− µσ ≤ 0,
−µσ2/2 otherwise,

(9)

weighting the inequality constraints ci+neq
(x) = cini (x) for

all i ∈ I. Note that the augmented Lagrangian LALM differs
from the standard Lagrangian (2) due to the squared terms
of the equality constraints cj(x) = ceqj (x) for all j ∈ E and
the sum of ψ(ci+neq

(x), λi+neq
;µ) for all i ∈ I.

The vector x[k] is updated to minimize the augmented
Lagrangian function LALM for given λ[k] and µ[k] > 0 as
follows

min
x[k]

LALM(x[k],λ[k];µ[k]). (10)

Methods of unconstrained optimization, such as Newton and
quasi-Newton methods, are usually employed to solve this
problem [4]. The estimated Lagrange multipliers λ[k] are
updated based on the extent of constraint violation, i.e.

λj [k + 1] := λj [k] +
cj(x[k])
µ[k] , for all j ∈ E,

(11a)

λi[k + 1] := max
(
λi[k] +

ci+neq (x[k])

µ[k] , 0
)
, for all i ∈ I.

(11b)

The barrier parameter µ[k] is adjusted during the iterations
to balance convergence and numerical stability.

This separate update of optimization variables and La-
grange multipliers can lead to more efficient and scalable
solutions. Particularly, this approach allows for the violation
of constraints during the iteration process and thus can
handle infeasible starting points and inequality constraints.
However, ALM uses multiple tuning parameters to handle
the constraints, such as the barrier parameter and others used
for practical implementation [3]. Finding appropriate values
for these parameters can be challenging and may require
problem-specific tuning. In addition, ALM typically involves
either the inversion of the Hessian or the approximation of
the inverted Hessian; which is computationally demanding.

III. LYAPUNOV-BASED NONLINEAR PROGRAMMING
(LBNLP)

This section presents the novel Lyapunov-based approach
for solving NLP. Section III-B presents an update law derived
from Lyapunov analysis including a proof of convergence.
Section III-C proposes an implementation algorithm for
the proposed method and Section III-D describes beneficial
properties of the proposed method in comparison to SQP and
ALM.

A. (Re-)Introduction of crucial definitions and facts
For later, gradient

gL(x,λ)︸ ︷︷ ︸
∈Rn

:= ∇xL(x,λ)
(2)
= ∇xf(x)︸ ︷︷ ︸

=:gf (x)∈Rn

+ [∇xc(x)
⊤]︸ ︷︷ ︸

=:C(x)∈Rn×nc

λ

(12)

and Hessian

HL(x,λ)︸ ︷︷ ︸
∈Rn×n

:= ∇xgL(x,λ) := ∇2
xL(x,λ)

(2)
= ∇2

xf(x)︸ ︷︷ ︸
=:Hf (x)∈Rn×n

+ ∇xC(x)λ︸ ︷︷ ︸
HC(x,λ)∈Rn×n

(13)

of the Lagrangian L as in (2) with respect to x are required.
Moreover, note that the following hold

∇λgL(x,λ)
(12)
= C(x) ∈ Rn×nc ,

∇λL(x,λ)
(2)
= c(x)⊤ ∈ R1×nc , and

∇2
λL(x,λ)

(2)
= Onc×nc .

 (14)

Furthermore, for C ∈ Rn×n,

∥C − In∥ = max
i
|σi(C)− 1| (15)

where σi(·) denotes the ith eigenvalue of its input matrix
and σ1(·) < σ2(·) < · · · < σn(·). For x ∈ R and y ∈ R, the
following holds (x− y)2 = x2− 2xy+ y2 ≥ 0, which gives

xy ≤ 1

2
(x2 + y2). (16)

Finally, the following Lyapunov function candidate

V := 1
2gL(x,λ)

⊤gL(x,λ) +
1
2c(x)

⊤c(x). (17)

will play a crucial role with its time derivative

d
dtV

(13),(14)
= gL(x,λ)

⊤
(
HL(x,λ)

d
dtx+C(x) d

dtλ
)

+c(x)⊤C(x)⊤ d
dtx (18)

≈ gL(x,λ)
⊤
(
HL(x,λ)

∆x
∆t +C(x)∆λ

∆t

)
+c(x)⊤C(x)⊤∆x

∆t (19)

= 1
∆t

(
gL(x,λ)
c(x)

)⊤

K(x,λ)

(
∆x
∆λ

)
, (20)

where, in the second step, the approximations d
dtx ≈

∆x
∆t

and d
dtλ ≈

∆λ
∆t were used (with ∆t > 0) and K(x,λ) is

as in (7). Clearly, it is well known from Lyapunov’s second
method [6], that if d

dtV < 0 for all non-zero (x,λ), the
system is stable; which implies for this approach here that
the iteration algorithm is not diverging.

B. Update law

Two update laws will be presented; one existing and
one proposed. To do so, define (i) the vector of Lagrange
multipliers of active constraints as λA := [λa]a∈A ∈ Rm

(with m ≤ nc), (ii) the active constraint vector as cA(x) :=
[ca(x)]a∈A ∈ Rm and (iii) its derivative with respect to x as
CA(x) := ∇xcA(x) ∈ Rn×m. Hence, only active constraints
are considered in the following which will allow to invoke
the LICQ (see Defintion 1).

1) Update law 1 (Existing): The first update law is(
∆x
∆λA

)
:= −αK⊤(x,λA)

(
gL(x,λA)
cA(x,λA)

)
=: −α

(
px
pλ

)
,

(21)
with step length α > 0 and search directions px and pλ
along x and λ, respectively. Inserting (21) into the time
derivative (20) of the Lyapunov function (17) yields1

d
dtV

(20)
≈ 1

∆t

(
gL
cA

)⊤
K

(
∆x
∆λA

)
(24)
= − α

∆t

(
gL
cA

)⊤
KK

⊤
(
gL
cA

)
≤ 0.

(22)
This update law was introduced in [5] as the discrete-time

Jacobian matrix transpose method (DJT).
2) Update law 2 (Proposed): Assume the inverse of

HL(x,λA) exists but does not need to be known. Define

B =
{
β ∈ R |

∥∥βH−1
L − In

∥∥ ≤ 1, β ≥ 0
}
. (23)

For α > 0 and β ∈ B, the second update law is given by(
∆x
∆λA

)
:= −α

[
K⊤ +

[
On×n On×m

Om×n −2βIm

]](gL
cA

)
︸ ︷︷ ︸

=:(p⊤
x , p⊤

λ)
⊤

(24)

Evaluating the time derivative (20) of the Lyapunov function
(17) for (24) yields

d
dtV

(20)
≈ g⊤L

(
HL

∆x
∆t +CA

∆λ
∆t

)
+ c⊤AC

⊤
A

∆x
∆t

(24)
= − α

∆tg
⊤
L

[
HLH

⊤
L +CAC

⊤
A

]
gL

− α
∆tc

⊤
AC

⊤
A CAcA

+ 2α
∆tg

⊤
LHL

(
βH−1

L − In
)
CAcA, (25)

(16)
≤ − α

∆tg
⊤
L

[
CAC

⊤
A

]
gL ≤ 0, (26)

where (26) is derived invoking the following argument

g⊤LHL

(
βH−1

L − In
)
CAcA

≤
∥∥g⊤LHL

∥∥∥∥βH−1
L − In

∥∥ ∥CAcA∥
(23)
≤

∥∥g⊤LHL

∥∥ ∥CAcA∥
(16)
≤ 1

2
g⊤L

[
HLH

⊤
L

]
gL +

1

2
c⊤A

[
C⊤

A CA

]
cA.

A possible selection of β depends on the eigenvalues of
HL according to (15). A suggestion is given as follows

β :=


σ1(HL) if σ1(HL) ≥ 0

|σn(HL)| if σn(HL) ≤ 0

0 else.
(27)

1The arguments x and λ are dropped to ease readability.

Please note that, for a proper choice of β, rough knowledge
of HL is required.

3) Comparison of Update laws 1 and 2: ∆λA of update
law 1 depends only on gL not on cA (see the elements of
matrix K as defined in (7)). Thus, update law 1 may not
effectively handle the constraints even though the Lyapunov
analysis proved the convergence. Referring to ALM, where
the update of λA solely depends on cA (see (11)), update
law 2 was derived to include an additional term of 2αβcA to
allow for updating λA. Update law 1 is considered a special
case of update law 2 with β = 0.

The effectiveness of including the additional term can be
shown by analyzing the time derivative (25) of the Lyapunov
function for two extreme cases. When β = 0 (i.e., update law
1), the upper bound of inequality (25) is derived as (26).
When β is designed to make the last term in (25) negligibly
small (i.e., ideal case of update law 2), the upper bound of
inequality (25) approximately becomes

d
dtV

(25)
≈ − α

∆tg
⊤
L

[
HLH

⊤
L +CAC

⊤
A

]
gL − α

∆tc
⊤
AC

⊤
A CAcA,

which shows a stronger convergence than update law 1 for
both gL and cA. Furthermore, if HL has full rank and the
active set A(x) satisfies the LICQ (i.e., HLH

⊤
L and C⊤

A CA
are positive definite), then exponential decay is shown by

d
dtV ≤ − α

∆t

(
gL
cA

)⊤ (
HLH

⊤
L O

O C⊤
A CA

)
︸ ︷︷ ︸

=:P

(
gL
cA

)
,

≤ −2α

∆t
λmin (P)V,

where P is positive definite. The exponential decay rate
is 2α

∆tλmin (P). The optimization variables and Lagrange
multipliers are updated as follows:

x[k + 1]← x[k] + ∆x[k], (28a)
λA[k + 1]← λA[k] + ∆λA[k]. (28b)

Because the update laws are implemented in discrete time,
the step length α should be chosen to ensure their stability.
The step length, proposed in Lemma 2.4 in [5], is adopted
in this study as follows

α[k] :=
x[k]⊤px[k] + λA[k]

⊤pλ[k]

∥px[k]∥2 + ∥pλ[k]∥2
, (29)

where px and pλ denote the search directions of the respec-
tive update law (see (21) and (24)).

C. Algorithm

The proposed method (update law 2), termed LBNLP, is
implemented by Algorithm 1. This algorithm consists of the
update law and thee more actions as follows:

• Restrain the Lagrange multipliers for the inequality
constraints greater than or equal to 0;

• Remove the inequality constraints with λi = 0 from the
active set A(x); and

• Add the inequality constraints with ci(x) < 0 to the
active set A(x).

Algorithm 1: LBNLP (Update law 2)

1 Compute a feasible starting point (x[0],λ[0]);
2 Set the initial active set A(x[0]);
3 for k = 0, 1, 2, . . . do
4 Compute ∆x[k] and ∆λA[k] using (24) and (29);
5 x[k + 1]← x[k] + ∆x[k];
6 λA[k + 1]← λA[k] + ∆λA[k];
7 λi[k + 1]← max(λi[k+1], 0), i ∈ A(x[k]) ∩ E;
8 λi[k + 1]← λi[k], i /∈ A(x[k]);
9 A(x[k+1])← A(x[k])\{j}, for all j ∈ A(x[k])

with λj [k+1] = 0;
10 A(x[k+1])← A(x[k]) ∪ {j}, for all j /∈ A(x[k])

with cj(x[k+1]) < 0;

TABLE I
PROPERTY COMPARISON OF LBNLP, SQP, AND ALM.

SQP ALM LBNLP
Matrix Yes Yes

inversion(s) (e.g., KKT) (e.g., Hessian) No

Tuning Not Necessary
parameters necessary (µ and others) No

Allowance of
constraint violation No Yes Yes

Update of
x and λ

Simultaneous Separate Simultaneous

These actions ensure that the three necessary KKT conditions
for the inequality constraints, as specified in (4c), (4d),
and (4e), are easily satisfied, despite not being explicitly
incorporated into the Lyapunov function (17).

D. Comparison of Properties of LBNLP, SQP, and ALM

Equations (24), (27), and (29) show that the proposed
method is matrix-inversion-free and tuning-parameter-free.
There is one more to note. The update law for λA, (24), is
similar to that of ALM, (11), in that both include information
on constraint violations (i.e., cA) but differs in that (24) also
includes information on gL(= ∇xL(x,λ)). The inclusion of
gL allows the appropriate update of λA without using tuning
parameters as in ALM.

The properties of the proposed method are summarized
in Table I as compared with SQP and ALM. Note that this
comparison only considers the case for local convergence.

IV. APPLICATION OF LBNLP TO NMPTC

This section discusses the possible application of the
proposed LBNLP to NMPC in general and NMPTC specif-
ically: Section IV-A explains two different formulations of
a general NMPC problem, whereas Section IV-B introduces
NMPTC of electrical drives. Section IV-C provides validation
results of the proposed method for the NMPTC problem and
compares those to the results obtained by SQP and ALM.

A. Nonlinear model predictive control (NMPC)

1) Problem statement: The NMPC formulation [7] is

u⋆ := argmin
u[k+1],··· ,u[k+N]

∥e[k+N]∥2F +

N−1∑
n=1

∥e[k+n]∥2Q+

+ w q
(
x[k+n],u[k+n]

)
(30a)

subject to

x[k+n+1] = f
(
x[k+n],u[k+n]

)
, (30b)

y[k+n] = g
(
x[k+n],u[k+n]

)
, (30c)

h(x[k+n],u[k+n]) ≥ 0, n = 1, . . . , N (30d)

where arguments k, k+1, . . . , k+N denote (succeeding)
sampling instants until the prediction horizon 1 ≤ N ∈ N;
x, u, and y denote system state, control input, and output
vector, respectively; e := yref − y represents the tracking
error (difference between output y and reference signal yref ;
F and Q are symmetric positive definite matrices (of appro-
priate size) weighting final and preceeding tracking errors;
q(·, ·) represents the control effort function; the weighting
factor w quantifies the relative importance of the control
effort function in comparison to the tracking error terms;
and f(·, ·), g(·, ·), and h(·, ·) denote functions of the state,
output, and (in)equality constraints, respectively.

This NMPC formulation can describe several optimal
tracking control problems of various applications [7]. How-
ever, it requires an appropriate tuning of the matrices F and
Q, and function q to guarantee stability and convergence
of the tracking error to zero due to the trade-off between
the tracking error and control effort terms in the objective
function [7]. To avoid this tuning a reformulation of the
problem statement is beneficial which is introduced next.

2) NMPC reformulation: The NMPC problem (30) can
be reformulated by considering the (final) tracking error as
equality constraint in contrast to considering it in the objec-
tive function (30a) which resolves the inevitable weighting
trade-off between tracking error and control effort terms in
(30a) [8]. The NMPC reformulation is given by

u⋆ := argmin
u[k+1],··· ,u[k+N]

N−1∑
n=1

q
(
x[k+n],u[k+n]

)
(31a)

subject to

x[k+n+1] = f
(
x[k+n],u[k+n]

)
, (31b)

y[k+n] = g
(
x[k+n],u[k+n]

)
, (31c)

h(x[k+n],u[k+n]) ≥ 0, n = 1, . . . , N (31d)
e[k+N] = 0 (31e)

There is no guarantee to satisfy the equality constraint in
(31e) (i) if the reference signal yref cannot be attained
within the prediction horizon no matter what control effort is
admissible, or (ii) if a numerical optimization method for this
problem does not allow violation of the equality constraint
However, if a numerical optimization method allows for the
violation of constraints like the proposed LBNLP method,
this NMPC problem can (approximately) be solved even if
the reference signal cannot be attained within the prediction

horizon. Note that SQP does not allow for the violation of
constraints whereas ALM does. However, using the proposed
LBNLP is even more advantageous than using ALM (recall
Table I and see validation in the next Subection IV-B).

Remark 1. For NMPC convergence, it is beneficial if the
reference signal is a smooth function as this helps to satisfy
the (in)equality constraints at all sampling instants [9].

B. Nonlinear model predictive torque control (NMPTC)

The NMPTC problem presented in [10] is re-discussed
to apply and validate the proposed LBNLP method. The
NMPTC here is used to solve the Maximum-Torque per
Current (MTPC) and Field Weakening (FW) problems –
subproblems of optimal feedforward torque control (OFTC)
[11] of permanent magnet synchronous machines (PMSMs)
modelled by the nonlinear dynamics

udq
s = Rdq

s i
dq
s + ωpJψ

dq
s + d

dtψ
dq
s ,

d
dtωm = 1

Θm

(
2

3κ2np(i
dq
s)⊤Jψdq

s −ml

)
d
dtϕm = ωm

 (32)

with J :=
[
0 −1
1 0

]
, stator voltages udq

s := (uds , u
d
s)

⊤,
stator currents idqs := (ids , i

d
s)

⊤, stator resistance matrix
Rdq

s := Rdq
s (idqs , ωp, ϕp) = (Rdq

s)⊤ > 0, stator flux
linkages ψdq

s := (ψd
s , ψ

d
s)

⊤ := ψdq
s (idqs , ωp, ϕp), load torque

ml, Clarke transformation factor κ ∈ {2/3,
√

2/3} [12,
Ch. 14], electrical angular velocity ωp = npωm (i.e., the
product of pole pair number np and mechanical angular
velocity ωm) and machine torque mm := 2

3κ2np(i
dq
s)⊤Jψdq

s .
Note that stator resistance matrix Rdq

s (idqs , ωp, ϕp) and stator
flux linkages ψdq

s (idqs , ωp, ϕp) may vary with current, fre-
quency and angle, respectively [13]. For this paper, only the
dependency on the currents idqs is considered. Moreover, the
machine torque mm represents the average torque neglecting
the dependencies on rotor position or iron losses [14]. Stator
voltages and currents are limited to [13]

∥udq
s ∥ ≤ ûmax and ∥idqs ∥ ≤ îmax (33)

to protect the machine (isolation and thermal capacity).
Rewriting (32) as current dynamics and discretizing2 yields

idqs [k+1] = TsL
dq
s [k]−1

(
udq
s [k]−Rdq

s i
dq
s [k]

−ωp[k]Jψ
dq
s [k]

)
+ idqs [k] =: f(idqs [k],udq

s [k]),

ωm[k+1] = Ts

Θm

(
mm[k]−ml[k]

)
+ ωm[k]

ϕm[k+1] = Tsωm[k] + ϕm[k],


(34)

where, to simplify notation, the following conventions
were and will be applied for differential inductance matrix
Ldq

s [k] := Ldq
s (idqs [k]) = Ldq

s (idqs [k])⊤ > 0, flux linkages
ψdq

s [k] := ψdq
s (idqs [k]) and machine torque mm[k] :=

2
3κ2npi

dq
s [k]⊤Jψdq

s [k].

2Invoking the Euler forward method leads to d
dt

x(t) ≈ (x[k+1] −
x[k])/Ts with sampled quantity x[k] ≈ x(kTs) at sampling instant k ∈ N
and sampling frequency Ts > 0.

For MTPC (or MTPA3) operation, the minimization of
Joule losses (idqs)⊤Rdq

s i
dq
s is crucial and usual a prediction

horizon of N = 1 is sufficient [10], [11]. With these losses,
the right-hand side f(idqs [k],udq

s [k]) of the current dynamics
in (34) and the physical machine constraints in (33), the
NMPTC problem can directly be formulated:

u⋆ := argmin
u[k+1]

idqs [k+1]⊤Rdq
s i

dq
s [k+1]︸ ︷︷ ︸

=:q(x[k+1],u[k+1])

(35a)

subject to

x[k+1] := idqs [k+1] = f
(
idqs [k],udq

s [k]
)
, (35b)

y[k+1] := mm[k+1] = 2
3κ2npi

dq
s [k+1]⊤Jψdq

s [k+1],
(35c)

h(x[k+1],u[k+1]) :=

(
û2max − ∥udq

s [k+1]∥2
î2max − ∥i

dq
s [k+1]∥2

)
≥ 02,

(35d)
e[k+1] := mm,ref [k+1]−mm[k+1] = 0 (35e)

where x[k+1] = idqs [k+1] and u[k+1] = udq
s [k+1]

denote the stator current and voltage vectors at the next
sampling instant, respectively. Clearly, NMPTC in (35) is
a subproblem of the reformulated NMPC in (31).

C. Validation

For the validation of the proposed LBNLP, the NMPTC
problem is implemented for an anisotropic PMSM with affine
stator flux linkage

ψdq
s =

[
Ld
s 0
0 Lq

s

]
idqs +

(
ψpm

0

)
,

where Ld
s and Lq

s denote the d- and q-axis inductances,
respectively. ψpm denotes the flux linkage of the permanent
magnets. The machine parameters are Rs = 25Ω, Ld

s =
0.45mH, Lq

s = 0.66mH, ψpm = 0.0563Wb, np = 8,
ûmax = 56.5V, îmax = 70A.

The NMPTC problem as stated in (35) was implemented
and numerically solved in MATLAB 2023a by SQP, ALM,
and the proposed LBNLP, respectively. The reference torque
mm,ref was given with 30 Nm. Two different electrical
angular velocities ωp, at 840 rad/s and 1090 rad/s, were
simulated to examine the cases when the inequality (voltage)
constraint is inactive and active, respectively.

ALM and the proposed method solved the problem in
the formulation of (31), while SQP solved the problem in
the formulation of (30) because SQP did not guarantee to
handle the equality constraint (31e). SQP was implemented
by the ‘fmincon’ function available in MATLAB, which
is a well-known NLP solver, with the option of ‘sqp’. Three
different values were used for the weighting factor w ∈
{10−4, 10−2, 100}, to examine the trade-off between the
tracking error terms and control effort term in the objective
function. ALM was implemented by solving (10) using
Newton’s method with an iteration termination condition of
∥∇xLALM∥ ≤ 10−4. Three different values were used for

3Maximum Torque per Ampere.

(a)

(b)

Fig. 1. NMPC results obtained using SQP with w = 10−4, 10−2, and
100 for the conditions of (a) wp = 840 rad/s and (b) wp = 1090 rad/s.

the barrier parameter µ ∈ {10−2, 100, 102}, to examine
the sensitivity of the solutions to this tuning parameter.
The proposed LBNLP was implemented by Algorithm 1.
Two different cases were examined when the for-loop in
Algorithm 1 was repeated once and twice, respectively, for
each sampling instant k.

The NMPTC results obtained using SQP are depicted in
Fig. 1. In this figure, the horizontal and vertical axes are
labeled x1 := ids and x2 := iqs , representing the first and
second elements of the state x := (x1, x2)

⊤ := (ids , i
q
s)

⊤,
respectively. The squares represent the optimal points of the
state x, which are on the MTPC hyperbola when the voltage
constraint is inactive (see Fig. 1(a)) and are on the inequality
constraint boundary (i.e., FW operation) when the voltage
constraint is active (see Fig. 1(b)). The state trajectory
evolves along the optimal points for w = 10−2. However,
setting w = 10−4 or w = 100, results in state trajectories
exhibiting poor transient behavior or barely meeting the
tracking condition, respectively. These outcomes were due
to the small and large emphasis on the control effort term.

The NMPTC results obtained using ALM are presented in
Fig. 2. Similar to the SQP method, ALM achieves a desirable
state trajectory exclusively with µ = 10−2. Smaller and
larger values of µ lead to unstable trajectories and failure
to meet the tracking condition, attributed to the rapid and
slow updates of the Lagrange multipliers, respectively.

The NMPTC results obtained using the LBNLP method
are depicted in Fig. 3. LBNLP achieves an almost in-
stantenous tracking of the optimal points even with only

(a)

(b)

Fig. 2. NMPC results obtained using ALM with µ = 10−2, 100, and 102

for the conditions of (a) wp = 840 rad/s and (b) wp = 1090 rad/s.

one repetition of the for-loop in Algorithm 1. Just one
more repetition of the for-loop guaranteed a very accurate
move. This result is significant in that conventional methods
like SQP and ALM provided satisfactory results only with
appropriate values of tuning parameters, whereas LBNLP
guaranteed a desirable result just by repeating the simple
algorithm once or twice, not relying on tuning parameters.

Figure 4 shows the NMPTC results obtained using update
law 1. Update law 1 gives almost the same result as LBNLP
when the inequality constraint is inactive (see Fig. 4(a)) but
fails to handle the active constraint with one repetition of
the for-loop (see Fig. 4(b)). With two repetitions, the state
trajectory reaches the optimal points; however, it exhibits
unacceptable transient behavior due to the violation of the
inequality constraint. This result demonstrats the superiority
of LBNLP over the existing update law 1 in terms of
constraint handling.

For the condition of ωp = 1090 rad/s, the computation
times were 1.76± 0.20ms for SQP with w = 10−2, 25.8±
9.2µs for ALM with µ = 100, and 12.8±2.1µs for LBNLP,
respectively. These results were obtained from one hundred
simulation runs, where the computation time was measured
using MATLAB’s ’tic-toc’ function. The computation
times of SQP were approximately one hundred times greater
than those of ALM and the proposed method, which is
probably due to the inversion of the KKT matrix for SQP
and multiple iterations to obtain reasonable solutions. The
average computation time of ALM was approximately twice
greater than that of the proposed method. This is because

(a)

(b)

Fig. 3. NMPC results obtained using LBNLP (update law 2) of repeating
the for-loop once and twice for each sampling instant k, for the conditions
of (a) wp = 840 rad/s and (b) wp = 1090 rad/s.

ALM uses multiple iterations to guarantee the convergence
of Newton’s method. This result verifies that the proposed
method, which is matrix-inversion-free and does not require
large numbers of iterations, is computationally efficient.

V. CONCLUSION

This study presented a novel numerical optimization
method to solve NLP. The method is based on a Lyapunov
approach to reach the necessary conditions for optimality.
The advantage of using the Lyapunov approach is that the
update law can be derived in a tuning-parameter-free and
matrix-inversion-free manner; thus, the proposed method
can be implemented easily and with less iteration and
computation time than conventional methods, such as SQP
and ALM. The effectiveness of the proposed method was
validated by using it to solve an NLP problem, which was
an NMPC problem for optimal torque control of PMSMs,
and comparing it with SQP and ALM. Future studies will
include measurement results to also validate the proposed
method experimentally.

REFERENCES

[1] J. T. Betts, Practical methods for optimal control and estimation using
nonlinear programming. SIAM, 2010.

[2] P. Karamanakos, E. Liegmann, T. Geyer, and R. Kennel, “Model
predictive control of power electronic systems: Methods, results, and
challenges,” IEEE Open J. Ind. Appl., vol. 1, pp. 95–114, 2020.

[3] N. Jorge and J. W. Stephen, Numerical optimization. Spinger, 2006.
[4] P. Srivastava and J. Cortés, “Nesterov acceleration for equality-

constrained convex optimization via continuously differentiable
penalty functions,” IEEE Control Syst. Lett., vol. 5, no. 2, pp. 415–420,
2020.

(a)

(b)

Fig. 4. NMPC results obtained using update law 1 of repeating the for-
loop once and twice for each sampling instant k, for the conditions of (a)
wp = 840 rad/s and (b) wp = 1090 rad/s.

[5] A. Bhaya and E. Kaszkurewicz, Control perspectives on numerical
algorithms and matrix problems. SIAM, 2006.

[6] H. Khalil, “Nonlinear systems,” 3rd edition, 2002.
[7] L. Grüne, J. Pannek, L. Grüne, and J. Pannek, Nonlinear model

predictive control. Springer, 2017.
[8] C. M. Hackl, F. Larcher, A. Dötlinger, and R. M. Kennel, “Is multiple-

objective model-predictive control “optimal”?” in Proceedings of
the 2013 IEEE International Symposium on Predictive Control of
Electrical Drives and Power Electronics (PRECEDE 2013), DOI
10.1109/sled-precede.2013.6684475, pp. 1–8. Munich, Germany:
Institute of Electrical and Electronics Engineers (IEEE), Oct. 2013.

[9] K. Choi, Y. Kim, S.-K. Kim, and K.-S. Kim, “Computationally
efficient model predictive torque control of permanent magnet syn-
chronous machines using numerical techniques,” IEEE Trans. Control
Syst. Technol., vol. 30, no. 4, pp. 1774–1781, 2021.

[10] K. Choi and K.-B. Park, “Model predictive torque control of syn-
chronous machines without a current or stator flux reference gen-
erator,” in 2023 IEEE 32nd International Symposium on Industrial
Electronics (ISIE), pp. 1–6. IEEE, 2023.

[11] H. Eldeeb, C. M. Hackl, L. Horlbeck, and J. Kullick, “A uni-
fied theory for optimal feedforward torque control of anisotropic
synchronous machines,” International Journal of Control, DOI
10.1080/00207179.2017.1338359, 2017.

[12] C. M. Hackl, Non-identifier based adaptive control in
mechatronics: Theory and Application, ser. Lecture Notes
in Control and Information Sciences, no. 466. Berlin:
Springer International Publishing, 2017. [Online]. Available:
http://www.springer.com/de/book/9783319550343

[13] C. M. Hackl, J. Kullick, and N. Monzen, “Generic loss minimization
for nonlinear synchronous machines by analytical computation of
optimal reference currents considering copper and iron losses,” in 2021
IEEE International Conference on Industrial Technology (ICIT), DOI
10.1109/icit46573.2021.9453497. IEEE, Mar. 2021.

[14] J. Rossmann, N. Monzen, M. J. Kamper, and C. M. Hackl, “Nonlinear
three-phase reluctance synchronous machine modeling with extended
torque equation,” in 2023 IEEE 32nd International Symposium on
Industrial Electronics (ISIE), DOI 10.1109/isie51358.2023.10228036.
IEEE, 2023.

http://dx.doi.org/10.1109/sled-precede.2013.6684475
http://dx.doi.org/10.1109/sled-precede.2013.6684475
http://dx.doi.org/10.1080/00207179.2017.1338359
http://dx.doi.org/10.1080/00207179.2017.1338359
http://www.springer.com/de/book/9783319550343
http://dx.doi.org/10.1109/icit46573.2021.9453497
http://dx.doi.org/10.1109/icit46573.2021.9453497
http://dx.doi.org/10.1109/isie51358.2023.10228036

	INTRODUCTION
	Preliminaries
	Nonlinear programming (NLP)
	Necessary Conditions for Optimality
	Typical Numerical Approaches to NLP
	SQP
	ALM

	Lyapunov-based Nonlinear Programming (LBNLP)
	(Re-)Introduction of crucial definitions and facts
	Update law
	Update law 1 (Existing)
	Update law 2 (Proposed)
	Comparison of Update laws 1 and 2

	Algorithm
	Comparison of Properties of LBNLP, SQP, and ALM

	Application of LBNLP to NMPTC
	Nonlinear model predictive control (NMPC)
	Problem statement
	NMPC reformulation

	Nonlinear model predictive torque control (NMPTC)
	Validation

	Conclusion
	References

