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Abstract

In this thesis, online flux linkage estimators for synchronous machines (SMs) are pro-

posed. The proposed flux estimators are generally applicable to all types of synchronous

machines and are designed to consider the nonlinearities caused by cross-coupling and

magnetic saturation in the machines. Additionally, the estimators are designed with-

out using filters designed in the frequency domain, thus avoiding phase and magnitude

distortions in transient state. Existing estimators primarily determine their estimation

performance in both transient and steady states based on the accuracy of the nominal

parameters. However, the proposed estimators assume the nonlinear flux term as a

ramp disturbance signal or estimate parameters online and update them to the actual

values, thereby reducing the impact of parameter inaccuracies. This improves the flux

estimation performance under various operating conditions. The validity of the pro-

posed estimators is demonstrated through comparisons with existing estimators with

finite element method (FEM)-based simulations of a 35 kW Interior Permanent Magnet

Synchronous Motor (IPMSM) provided in MATLAB/Simulink.
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국 문 요 약

본 논문에서는 실시간으로 동기전동기(Synchronous Machines)의 비선형 쇄교 자속

을 추정할 수 있는 추정기들을 제안한다. 제안된 자속 추정기들은 모든 동기기에 일반

적으로 적용 가능하며, 동기기의 교차 결합 및 자기 포화로 인한 비선형성을 고려하여

설계되었다. 또한, 주파수 영역에서 설계된 필터를 사용하지 않고 추정기를 설계하여

과도 상태에서의 추정치에 위상 및 크기 왜곡이 발생하지 않는다. 기존의 추정기들은

공칭 파라미터의 정확성에 따라 과도 및 정상 상태에서의 추정 성능이 결정된다. 그러나

제안된 추정기들은 비선형 자속 항을 일정한 기울기를 가진 외란 신호로 가정하거나,

실시간으로 파라미터를 추정하여 실제 값으로 업데이트함으로써 파라미터 부정확성으

로 인한 영향을 줄일 수 있으므로 이를 통해 다양한 운전 조건에서 자속 추정 성능을

향상시킨다. 제안된 추정기들은 매트랩/시뮬링크에서 제공하는 유한 요소법 기반의 35

kW IPMSM 시뮬레이션을 통해 기존의 추정 방식들과 비교 및 검증하여 그 타당성을

입증하였다.

주요어: 동기전동기, 비선형 쇄교자속, 실시간 추정, 파라미터 업데이트
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Chapter 1

Introduction

1.1 Motivation

Synchronous machines (SMs) have advantages such as high drive efficiency, output

torque, power density, and excellent control performance [4],[5]. These advantages have

led to their extensive use in various industries, including high-performance control

applications such as servo systems [6] and home appliances [7], as well as in renewable

energy and eco-friendly sectors like wind power generators [8] and hybrid and electric

vehicles [3],[9].

Synchronous machines (SMs) are generally classified into three types: Permanent

Magnet Synchronous Motor (PMSM), which has the same or different d-q axis stator

inductances and a rotor with embedded permanent magnets; Synchronous Reluctance

Motor (synRM), which has different d-q axis inductances due to the anisotropic rotor

design that lacks permanent magnets and relies on rotor saliency for torque production;

and Permanent Magnet-Assisted Synchronous Reluctance Motor (PMa-SynRM), which

combines permanent magnets with a reluctance rotor to enhance torque production

and efficiency. By appropriately utilizing the permanent magnets and the additional

reluctance torque of these SMs, it is possible to maintain high output torque and

efficiency over a wide operating range from low to high mechanical speeds. Therefore,
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BMW i3 (2016) Leaf2012 Bosch SMG Prius McLaren
Motor type IPM IPM PM PM SPM

Power density (kW/L) 9.1 4.2 9.5 4.8 -
Specific power (kW/kg) 3.0 1.4 2.5 1.6 4.6

Max torque (Nm) 250 207 198 207 130
Max power (kW) 125 80 80 60 120
Max efficiency (%) 94 97 97 96 96

Table 1.1: Specifications of EV traction motors in [3].

due to these advantages, many automotive manufacturers have adopted SMs as traction

motors for electric vehicles [3] (as shown in Table 1.1).

In general, SMs generate torque through the interaction of the rotating magnetic

fields produced by the stator and rotor, making stator flux linkage information crucial

for controlling the torque of SMs. However, since flux cannot be directly measured by

sensors, it is indirectly expressed using the machine parameters of the SMs (inductance,

permanent magnet flux linkage) and the measurable stator current, allowing the SMs

torque to be represented using these parameters and the current.

These machine parameters of SMs are commonly used in fault diagnosis algorithms

for detecting stator winding short circuits and demagnetization. These algorithms can

enhance the reliability and efficiency of SMs by continuously monitoring them and

predicting necessary maintenance tasks [10],[11],[12],[13],[14]. In addition, these pa-

rameters are also used in various optimal torque control strategies to minimize copper

losses caused by the current in the stator windings, thereby increasing output efficiency

and torque [15],[16]. In general, there are limitations to directly controlling the desired

torque reference of SMs; it is necessary to convert the torque command into current

references. However, since the output torque can be expressed as a bilinear function
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of the d- and q-axis currents, there are infinite combinations of d- and q-axis stator

currents that can produce the same torque. Thus, these current combinations can be

typically determined using the maximum torque per ampere (MTPA) control method,

which maximizes torque per unit of current. However, when the mechanical speed of the

synchronous machine exceeds the base speed, the increased back electromotive force

(EMF) results in a limitation of the input voltage, making it impossible to maintain

MTPA operation. Therefore, field weakening control is applied, which involves control-

ling the d-axis current to negative values to suppress the influence of the back EMF.

Therefore, to optimally control the torque of the SMs and accurately implement these

approaches, precise parameter information is ultimately essential. Moreover, the cur-

rent references generated by the current reference generator can be optimally controlled

through feedforward compensation-based current control or advanced optimal control

based on model predictive control strategies [17],[18] such as Continuous Control Set

Model Predictive Control (CCS-MPC) or Finite Control Set Model Predictive Control

(FCS-MPC), for which accurate parameter or flux linkage information is necessary.

However, these parameters vary with the operating conditions of SMs, which are

affected by the temperature of the stator windings, currents, and the temperature of

the permanent magnets [19],[20]. To address these issues, several studies have pre-

sented adaptive-based methods for online estimation of multiple parameters [21],[22],

but these approaches fail to ensure estimation convergence. Some studies have sug-

gested high-frequency current signal injection methods [23],[24] to temporarily resolve

the rank deficiency issue and estimate parameters. Nevertheless, these approaches cause
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additional core losses reducing the efficiency of the synchronous machine, and fail to

consider the inductance variation with d-q axis current resulting in decreased accuracy

of inductance estimation at the flux saturation region [25]. As a result of the absence of

an accurate solution for online parameter estimation, the industry conventionally relies

on 2-dimension lookup tables (LUTs) that list parameter information obtained through

extensive experiments at all operating conditions [26],[27]. However using LUTs has

several drawbacks because these tables require significant time and costly experimen-

tal resources, and interpolation must be used, which can degrade control performance

due to errors with the actual parameters when operating the synchronous machine.

Additionally, since LUTs are typically based on parameter information from a single

motor sample, it is difficult to apply them uniformly to all synchronous machines due

to parameter variations caused by manufacturing tolerances, aging, or temperature

changes [28].

In this background, a method for estimating parameters online without relying on

LUTs is necessary to successfully operate SMs. As mentioned above, it is challenging

to directly estimate the inductance and permanent magnet flux linkage parameters

due to the rank deficiency of the estimation model. Instead of directly estimating

these parameters, the stator flux linkage can be used, as it can be expressed as either

the static inductance [29], which has a linear relationship with the stator current, or

the dynamic inductance [29],[30], which has a nonlinear relationship with the stator

current considering the magnetic saturation and cross-coupling effects. Thus, if the

accurate stator flux linkage can be estimated online, it becomes possible to estimate
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these inductances online, making it necessary to first develop a high-performance stator

flux linkage estimator.

1.2 Research Objectives

Since the machine parameters of SMs continuously vary due to changes in temper-

ature, speed, and current, a flux linkage estimator capable of online estimation of flux

linkage or parameters is necessary to enhance the reliability and control performance

of SMs. However, the estimation performance of existing flux estimators (especially

transient estimation performance) is determined by the filters or nominal parameters

used in the estimators.

Therefore, the objectives of this study are (i) to develop an observable estimation

model based on the stator flux linkage dynamics, (ii) to design a state observer in the

time domain without relying on filters to improve estimation performance, and (iii) to

develop a flux estimator that reduces dependence on nominal parameters to enhance

estimation performance during transient states.

1.3 Outline of the Thesis

This thesis is organized as follows: In Chapter 1, the background and objectives of

this study are discussed. In Chapter 2, the mathematical modeling of synchronous ma-

chines (with interior permanent magnet synchronous machines as an exemplary model),

optimal current control based on finite control set model predictive control, and exist-

ing research on flux linkage estimation are covered. In Chapter 3, two flux estimators
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are proposed that can address the limitations of existing estimators by reducing pa-

rameter dependency and improving transient estimation performance. In Chapter 4,

the proposed flux estimators are validated through simulations and compared with the

existing method. Finally, the conclusion of this study and future research are discussed

in Chapter 5, concluding the thesis.
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Chapter 2

Preliminaries

Synchronous Machines (SMs) generate electrical torque through the continuous inter-

action of the two rotating magnetic fields, which are generated by the stator and the

rotor, so it is important to analyze the physical behavior of the stator flux linkage.

In Section 2.1, the basic physical characteristics and mathematical model of SM are

briefly reviewed. In general, stator flux linkage can be expressed as a nonlinear func-

tion of stator current and machine parameters, so the voltage equation of SM can be

represented by the dynamics of the stator current. Therefore, current control meth-

ods for SM based on stator current dynamics are briefly introduced in Section 2.2. To

properly perform these methods, accurate parameter information, such as inductances

and permanent magnet flux linkages, is required. However, these parameters vary non-

linearly with the stator current and the temperature of the stator windings and rotor,

affecting the control performance of the SM. Thus, Section 2.3 introduces conventional

approaches for online stator flux linkage estimation, which is the first step in obtaining

the parameters required for current control or optimal torque control.
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2.1 Mathematical Model of SM

Modeling in the (a,b,c)-reference frame

In SM, each stator winding in the (a,b,c)-reference frame is connected in a Y-connection

structure, and according to Kirchhoff’s law, the sum of all instantaneous stator currents

is zero, i.e.

ias(t) + ibs(t) + ics(t) = 0, ∀t ≥ 0 (2.1)

where the voltage applied to the three-phase stator windings of an SM consists of the

voltage drop across the winding resistance and the induced voltage due to the time

derivative of the stator flux linkage, as described by Faraday’s law. Therefore, the

mathematical model of the SM can be expressed as

uabcs (t) = Rsi
abc
s (t) +

d

dt
ψabc
s

(
iabcs (t), θr(t)

)︸ ︷︷ ︸
=:ψabcs (t)

, (2.2)

(
θr(t) := np(θm(t) + θpm) = np

(∫ t

0

ωm(τ)dτ + θpm

))

where Rs is the stator resistance, u
abc
s := (uas , u

b
s, u

c
s)

⊤ (in V ·R3) and iabcs := (ias , i
b
s, i

c
s)

⊤

(in A · R3) denote the stator phase voltages and stator phase currents in the phase

windings, respectively. The linear combination of the magnetic fields produced by the

phase currents and the permanent magnets in the rotor (if present) yields the overall

stator flux linkages ψabc
s := (ψas , ψ

b
s, ψ

c
s)

⊤ (in Wb · R3). θr and θm (in rad) denote the

electrical and mechanical rotor position between the d-axis and the as-axis, which

changes over time and θpm (in rad) is an orientation offset (constant) of the permanent
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Figure 2.1: SM structure.

magnets concerning the axis of phase a (see Fig.2.1). ωm (in rad/s) is the mechanical

angular velocity and np (∈ N) denotes the pole pair number.

As an exemplary model of a synchronous machine, the stator flux linkage vector

of a synchronous machine with embedded permanent magnets in the rotor (interior

permanent magnet synchronous machine, IPMSM) is given by (see Chap.5 in [5])

ψabc
s

(
iabcs , θr

)
=


Laas Labs Lacs

Lbas Lbbs Lbcs

Lcas Lcbs Lccs


︸ ︷︷ ︸

=:Labcs (θr)∈R3×3

iabcs + ψpm


cos θr

cos
(
θr − 2π

3

)
cos

(
θr +

2π
3

)


︸ ︷︷ ︸

=:ψabcpm (θr)∈R3

= Labcs (θr)i
abc
s +ψabc

pm(θr), (2.3)
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in the (a,b,c)-reference frame with the stator inductance matrix

Labcs (θr) :=


Lls + LA − LB cos 2θr −1

2LA + LB cos 2
(
θr − π

3

)
−1

2LA + LB cos 2
(
θr +

π
3

)
−1

2LA + LB cos 2
(
θr − π

3

)
Lls + LA − LB cos 2

(
θr +

π
3

)
−1

2LA + LB cos 2θr

−1
2LA + LB cos 2

(
θr +

π
3

)
−1

2LA + LB cos 2θr Lls + LA − LB cos 2
(
θr − π

3

)

 ,

where Labcs (in H = Vs/A · R3×3) is a position-dependent stator inductance matrix

in the (a,b,c)-reference frame, where the diagonal elements denote the self-inductance,

and the off-diagonal elements represent the mutual inductance. ψabc
pm (in Wb · R3) is

a position-dependent permanent-magnet flux linkage vector with a magnitude of ψpm.

Lls is the leakage inductance of the stator windings, LA is the inductance independent

of the rotor’s position, and LB is the maximum inductance that varies with rotation

due to the salient rotor structure. The structure of SM and an example of the phase as

winding stator inductance in IPMSM are illustrated in Fig.2.1 and Fig.2.2, respectively.

According to equation (2.1), if all physical signals of the three-phase winding are

balanced, one physical quantity can be expressed in terms of the other two (ias(t) =

−ibs(t)−ics(t),∀t ≥ 0). Consequently, using reference frame transformations with matrix

equations, the physical quantities in the (a,b,c)-reference frame can be projected into

either the stationary (α,β)-reference frame or the synchronously rotating (d,q)-reference

frame, which can simplify three physical quantities into two. Figure 2.3 shows the

reference frame transformation according to each frame.

Modeling in the stationary (α,β)-reference frame

The machine model (2.2) can be expressed in the stationary (α,β)-reference frame with

orthogonal α- and β-axes, where the zero-sequence component can be neglected due
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r

r
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Figure 2.2: The stator inductance of phase as winding for rotor positions. (a) magnetic
equivalent rotor and flux linkages of an IPMSM. (b) in order, the self-inductance of the
stator as winding, the mutual inductance between as and bs phases, and the inductance
between the stator as winding and the magnet.

to the balanced three-phase signals in (2.1). Such stator-fixed reference frame transfor-

mation for balanced signals can be simplified by using the transformation matrix

T(0) :=
2

3


1 −1

2
−1

2

0
√
3
2
−

√
3
2

1
2

1
2

1
2


︸ ︷︷ ︸

T(0)∈R3×3

⇒ Tc :=
2

3

1 −1
2
−1

2

0
√
3
2
−

√
3
2


︸ ︷︷ ︸

Tc∈R2×3

, (2.4)

where T(0) is called the Clarke transformation matrix and Tc represents the simplified

Clarke transformation matrix, where the last row in T(0) can be neglected for bal-

anced signals (see Chap.14 in [29]), reducing the three-phase signal vectors to two. By
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Figure 2.3: (a,b,c)-reference frame, stationary (α,β)-reference frame and rotating (d,q)-
reference frame.

introducing the transformed quantities

uαβs := Tcu
abc
s , iαβs := Tci

abc
s , ψαβ

s := Tcψ
abc
s and Tc

d

dt
ψabc
s =

d

dt
ψαβ
s

in the (α,β)-reference frame and the machine dynamics in (2.2) can be expressed as

uαβs (t) = Tcu
abc
s (t)

= Rsi
αβ
s (t) +

d

dt
ψαβ
s

(
iαβs (t), θr(t)

)︸ ︷︷ ︸
=:ψαβs (t)

, (2.5)

where uαβs := (uαs , v
β
s )

⊤, iαβs := (iαs , i
β
s )

⊤ and ψαβ
s := (ψαs , ψ

β
s )

⊤ denote the stator

voltage, current and flux linkage vectors in the (α,β)-reference frame, respectively.

Likewise, applying the simplified clarke transformation in (2.4) to the stator flux
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linkage vector in (2.3) yields the stator flux linkage vector

ψαβ
s

(
iαβs , θr

)
= Tcψ

abc
s

(
iabcs , θr

)
= TcL

abc
s (θr)T

−1
c︸ ︷︷ ︸

=:Lαβs (θr)∈R2×2

iαβs + Tcψ
abc
pm(θr)︸ ︷︷ ︸

=:ψαβpm(θr)∈R2

= Lαβs (θr)i
αβ
s +ψαβ

pm(θr) (2.6)

in the (α,β)-reference frame with the transformed stator inductance matrix Lαβs and

permanent-magnet flux linkage vector ψαβ
pm

Lαβs (θr) :=

Ls +∆Ls cos 2θr −∆Ls sin 2θr

−∆Ls sin 2θr Ls −∆Ls cos 2θr

 ,ψαβ
pm(θr) := ψpm

cos θr
sin θr

 , (2.7)

(
Ld := Lls +

3(LA − LB)
2

, Lq := Lls +
3(LA + LB)

2
, Ls :=

Ld + Lq
2

,∆Ls :=
Ld − Lq

2

)

where the coefficients of the Lαβs and ψαβ
pm vary depending on the rotor positions.

Consequently, there are still time-varying coefficients in Lαβs and machine model (2.5),

by applying the rotating (d,q)-reference frame transformation, which rotates at the

synchronous speed with the rotor, the time-varying elements can be eliminated.

Modeling in the synchronously rotating (d,q)-reference frame

The stator-fixed signal vector in the stationary (α,β)-reference frame can be trans-

formed into the synchronously rotating (d,q)-reference frame with the electrical angle
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θr by using the simplified transformation matrix

Tp(θr) :=


cos(θr) sin(θr) 0

− sin(θr) cos(θr) 0

0 0 1


︸ ︷︷ ︸

Tp(θr)∈R3×3

⇒ R(θr) :=

 cos(θr) sin(θr)

− sin(θr) cos(θr)


︸ ︷︷ ︸

R(θr)∈R2×2

, (2.8)

where Tp(θr) is called the Park transformation matrix and R(θr) represents the sim-

plified Park transformation matrix, where the last row and column in Tp(θr) can be

neglected for the balanced signals (see Chap.14 in [29]). By introducing the transformed

quantities

udqs := R(θr)u
αβ
s , idqs := R(θr)i

αβ
s , and ψdq

s := R(θr)ψ
αβ
s

in the (d,q)-reference frame and the machine dynamics in (2.5) can be expressed as

udqs (t) = R(θr)u
αβ
s (t)

= Rsi
dq
s (t) +R(θr)

d
(
R−1(θr)ψ

dq
s

)
dt︸ ︷︷ ︸

=: d
dt
ψdqs +ωrJψ

dq
s

= Rsi
dq
s (t) + ωr(t)Jψ

dq
s (t) +

d

dt
ψdq
s

(
idqs (t), θr(t)

)︸ ︷︷ ︸
=:ψdqs (t)

, J :=

0 −1
1 0

 , (2.9)

where udqs := (uds, u
q
s)

⊤, idqs := (ids, i
q
s)

⊤ and ψdq
s := (ψds , ψ

q
s)

⊤ denote the stator voltage,

current, and flux linkage vectors in the (d,q)-reference frame, where all physical vari-
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ables become constant with respect to time. ωr represents the electrical velocity of the

rotor.

Similarly, applying the simplified Park transformation in (2.8) to the stationary

reference frame flux linkage in (2.6) results the stator flux linkage vector

ψdq
s (idqs ) = R(θr)L

αβ
s (θr)R(θr)

−1︸ ︷︷ ︸
=:Ldqs (idqs )=Ldqs (t)

idqs + R(θr)ψ
αβ
pm(θr)︸ ︷︷ ︸

=:ψdqpm(idqs )=ψdqpm(t)

= Ldqs (idqs )idqs +ψdq
pm(i

dq
s ), (2.10)

in the (d,q)-reference frame with the static inductance matrix Ldqs considering the cross-

coupling effects and magnetic saturation [31] and permanent-magnet flux linkage vector

ψdq
pm

Ldqs (idqs ) =

Lds(ids, iqs) 0

0 Lqs(i
d
s, i

q
s)

 , ψdq
pm = ψpm(i

d
s, i

q
s)

1
0

. (2.11)

Due to the choice of θr(·) in (2.8) (i.e., the so-called permanent-magnet flux linkage

orientation or, simply, field orientation), the stator flux linkage vector ψdq
s (idqs ) does not

depend on the electrical or the mechanical angle anymore (constant). Moreover, the

permanent-magnet flux linkage simplifies to the constant d-component ψpm. Figure 2.4

shows an example of the static inductances (Lds, L
q
s) and the permanent magnet flux

linkage (ψpm) for the d- and q-axis currents of an IPMSM obtained through extensive

experiments.

In general, the flux linkage vector in (2.10) can be expressed as a linear relationship
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(a) (b) (c)

Figure 2.4: Stator inductance and permanent magnetic flux linkage of a PMSM versus
d− and q-axes currents. (a) d-axis inductance. (b) q-axis inductance. (c) permanent
magnetic flux linkage.

between the d- and q-axis stator currents, the constant inductances (Lds, L
q
s), and

the permanent magnet flux linkage (ψpm), when the stator currents are small. Thus,

substituting (2.10) for the constant parameters into (2.9) leads the current dynamics

as scalar equations, i.e.

Lds
d

dt
ids(t) = −Rsi

d
s(t) + ωr(t)L

q
si
q
s(t) + uds(t), (2.12)

Lqs
d

dt
iqs(t) = −Rsi

q
s(t)− ωr(t)(Ldsids(t) + ψpm) + uqs(t). (2.13)

Accordingly, the machine torque

Te(i
dq
s ,ψ

dq
s ) =

3

2
npψ

dq
s (idqs )× idqs

=
3

2
np

(
ψpm + (Lds − Lqs)ids

)
iqs (2.14)

in the (d,q)-reference frame can be derived.

Practically, the machine parameters (Lds, L
q
s, ψpm) are highly influenced by the
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temperature of the cores (stator, rotor), permanent magnets in the rotor and stator

winding, which degrades the permeability of the cores and reduces their ability to

magnetize [32],[33]. Ultimately, due to continuous changes in parameters caused not

only by the behavior of the stator current but also by temperature variations in the

rotor and stator windings, it is necessary to develop methods for online estimation of

these parameters to improve the operating performance of the SMs.

2.2 Optimal Control Strategy for SM

Model Predictive Control (MPC) offers a more flexible optimal control solution

compared to conventional feedforward-based PI regulators that determine the switch

mode operation of power switch devices through PWM (Pulse Width Modulation),

by evaluating an appropriate cost function that allows to selection of the possible

switching states as control inputs from either a Continuous Control Set (CCS) or a

Finite Control Set (FCS). This approach offers the advantage of optimizing several

control conditions such as switching frequency, switching losses, and machine torque

ripple minimization while considering the constraints of the SM. However, to achieve

these optimizations, a significant computation burden is required, especially because

the CCS-MPC method determines control inputs within a continuous control set range,

necessitating complex and computationally intensive optimization [34],[35]. In contrast,

the FCS-MPC method considers control inputs within a finite control set, simplifying

the optimization process and reducing the computational burden compared to CCS-

MPC. Moreover, FCS-MPC has the advantages of intuitive concept, easy handling of
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nonlinear constraints, and realization of multivariable control [36],[37]. Additionally, the

calculation burden of the optimal solutions for MPC-based methods has been improved

by the development of cost-effective and efficient microprocessors, allowing for extensive

computations at low cost [38]. Therefore, with accurate parameter information of the

SMs model, the FCS-MPC method is an excellent alternative to PI regulator. This

section focuses on introducing the FCS-MPC method for the current control of IPMSM.

Finite Control Set Model Predictive Current Control

Finite Control Set Model Predictive Current Control (FCS-MPCC) is an FCS-MPC-

based optimal current control method that defines the objective function as the er-

ror between the predicted current and the reference current, based on discrete-time

model dynamics. The switching states (one of the eight switching states of a 2-level

inverter) corresponding to the minimum value of this objective function are determined

as the control inputs. Therefore, it has the advantage of easily designing and evalu-

ating objective functions to optimize control conditions such as switching and power

loss minimization while considering the voltage and current limits of the synchronous

machine.

Typically, to obtain the predicted currents, the derivative of the d-q axis currents

with respect to discrete time can be expressed using a forward Euler approximation

[38] as follows.

didqs
dt
≈ idqs (k + 1)− idqs (k)

Ts
, (2.15)

Here, Ts is the sampling time.
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By substituting the discrete-time current dynamics in (2.15) into the scalar equa-

tions (2.12) and (2.13) respectively, the prediction of the future currents in the (d,q)-

reference frame at the k + 1 time can be expressed as

id,ps (k + 1) =

(
1− RsTs

Lds

)
ids(k) +

Ts
Lds

(ωr(k)L
q
si
q
s(k) + uqs

∗(k)) , (2.16)

iq,ps (k + 1) =

(
1− RsTs

Lqs

)
iqs(k)−

Ts
Lqs

(
ωr(k)L

d
si
d
s(k) + ωr(k)ψpm − uds

∗
(k)

)
, (2.17)

where id,ps and iq,ps represent the predicted d- and q-axis stator currents. Here, the

possible voltage references in the (d,q)-reference frame as control inputs (uds
∗
,uqs

∗) are

composed of a finite control set (8 switching states). Accordingly, to determine the

control inputs (uds
∗
,uqs

∗), the three-phase voltage references in the (a,b,c)-reference frame

can be expressed using the switching functions as follows

uas
∗(n) =

Udc
3

(2Sa(n)− Sb(n)− Sc(n)) , (2.18)

ubs
∗
(n) =

Udc
3

(2Sb(n)− Sa(n)− Sc(n)) , (2.19)

ucs
∗(n) =

Udc
3

(2Sc(n)− Sb(n)− Sa(n)) , (2.20)

S(n) = (Sa(n), Sb(n), Sc(n)) , (2.21)

where Udc is the input voltage, and uas
∗, ubs

∗
, and ucs

∗ denote the voltage references in

the (a,b,c)-reference frame, respectively. Sa, Sb, and Sc represent the switching states

of each phase, where 1 indicates the switch is ON and 0 indicates the switch is OFF,

operating complementarily within each phase’s switch leg and S denotes the switching
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Cost Function Switching States Phase Voltages Space Voltage Vectors
g S(n) = (Sa,Sb,Sc) uas ubs ucs Un(n = 0− 7)
g0 S(0) = (0,0,0) 0 0 0 U0 = 0∠0◦

g1 S(1) = (1,0,0) 2
3
Udc −1

3
Udc −1

3
Udc U1 =

2
3
Udc∠0◦

g2 S(2) = (1,1,0) 1
3
Udc

1
3
Udc −2

3
Udc U2 =

2
3
Udc∠60◦

g3 S(3) = (0,1,0) −1
3
Udc

2
3
Udc −1

3
Udc U3 =

2
3
Udc∠120◦

g4 S(4) = (0,1,1) −2
3
Udc

1
3
Udc

1
3
Udc U4 =

2
3
Udc∠180◦

g5 S(5) = (0,0,1) −1
3
Udc −1

3
Udc

2
3
Udc U5 =

2
3
Udc∠240◦

g6 S(6) = (1,0,1) 1
3
Udc −2

3
Udc

1
3
Udc U6 =

2
3
Udc∠300◦

g7 S(7) = (1,1,1) 0 0 0 U7 = 0∠0◦

Table 2.1: Switching states, phase voltages and space voltage vector with a cost func-
tion.

( )1 11,0,0 g→U

( )2 21,1,0 g→U( )3 30,1,0 g→U

( )4 40,1,1 g→U

( )5 50,0,1 g→U ( )6 61,0,1 g→U

( )

( )

0 0

7 7

0,0,0

1,1,1

g

g

→

→

U

U

Re

Im

Figure 2.5: Voltage vectors and corresponding cost function in the complex plane.

state vector, including each phase. Table 2.1 and Fig.2.5 show all possible combinations

of the switching states, space voltage vectors, and cost functions.

Transforming the voltage references in the (a,b,c)-reference frame (uas
∗,ubs

∗
,ucs

∗) to
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the (d,q)-reference frame (uds
∗
,uqs

∗) results as follows

uds
∗
(k) =

2

3

(
uas

∗ cos (θr) + ubs
∗
cos

(
θr −

2π

3

)
+ ucs

∗ cos

(
θr +

2π

3

))
, (2.22)

uqs
∗(k) = −2

3

(
uas

∗ sin (θr) + ubs
∗
sin

(
θr −

2π

3

)
+ ucs

∗sin

(
θr +

2π

3

))
, (2.23)

whereby substituting the voltage references in (2.22) and (2.23) calculated from the

three-phase stator voltage references (uas
∗,ubs

∗
,ucs

∗) for the 8 switching states into the

predicted current dynamics in (2.16) and (2.17), all the predicted currents can be

obtained. Therefore, to determine the voltage references in the (d,q)-reference frame

that minimizes the errors between the current references and the predicted currents, the

objective function can be derived and evaluated, which the switching state of minimum

cost functions g for 8 all switching states are determined as the control input voltages.

The operating principle of predictive current control for the implementation is shown

in Algorithm 1 and Fig 2.6 shows the control scheme based on the FCS-MPC current

controller.

g = |i∗d − i
p
d|+

∣∣i∗q − ipq∣∣ (2.24)

The accuracy of the predicted currents through FCS-MPCC is highly influenced

by the machine parameters (inductance, stator, and permanent magnet flux linkages)

[39]. However, as previously mentioned, machine parameters are not only nonlinear

functions of stator currents but also very sensitive to temperature changes in the stator

and rotor cores, as well as the stator windings and permanent magnets. Therefore, for
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Figure 2.6: Control scheme using FCS-MPC current controller.

Algorithm 1: Predictive current control algorithm

1: Startup
2: Measure idq(k) and ωr(k)
3: n = 0
4: for n ≤ 7 do
5: n = n+ 1
6: Calculate u∗

dq(k)← uas
∗(n), ubs

∗
(n), ucs

∗(n) using (2.18)−(2.20)
7: Predict idq(k + 1) using (2.16) and (2.17)
8: Evaluate cost function g = |i∗d − i

p
d|+ |i∗q − ipq|

9: Store optimal values for g
10: end for
11: if n = 7 then
12: Apply the optimal space voltage vector u∗

n for minimum g
13: end if
14: return u∗

dq(k)
15: Wait for next sampling instant

robust control of FCS-MPCC, it is essential to develop a flux estimator or parameter

identifier that can estimate and update the mismatched parameters in the prediction

model online, thereby improving the accuracy of the predicted model.
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2.3 Existing Flux Linkage Estimators

As mentioned above, online information on the machine parameters is essential not

only for improving the operating performance of SMs (such as SM fault diagnosis,

MTPA, etc.) but also for achieving robust optimal control of the predictive model,

especially the FCS-MPCC method. However, it is extremely challenging to directly

estimate all machine parameters using only the two current dynamics in (2.12) and

(2.13) due to rank deficiency in the model equations (to estimate more than three

parameters with only two equations) [23]. Therefore, instead of directly estimating the

machine parameters, the stator flux linkage is first estimated [1],[40],[41],[42], and then

machine parameter identification is conducted online [43] or offline [44]. This section

introduces existing methods for stator flux linkage estimation as a preliminary step for

machine parameters estimation.

2.3.1 Steady-State Assumption-based Flux Linkage Estimator

The machine dynamic model in (2.9) can be rearranged as a flux-based dynamic

model

d

dt
ψdq
s (t) = udqs (t)−Rsi

dq
s (t)− ωr(t)Jψdq

s (t), (2.25)

where the d-q axis flux linkage vectors are constant in steady state, making the time

derivative of the flux vector zero. Therefore, based on the steady-state assumption, the
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flux estimate vector can be simplified as

ψ̂dq
s (s) =

1

ωr
J−1

(
udq∗s (s)− R̂si

dq
s (s)

)
, (2.26)

where R̂s is the estimated stator resistance, which is a nonlinear function of the stator

winding temperature but is assumed to be accurately estimable, and ψ̂dq
s represents the

estimate of the flux linkage vector. The electrical angular velocity ωr can be assumed to

be constant because it is sufficiently slow compared to the electrical signals. The control

input voltages udq∗s obtained from FCS-MPCC in (2.22) and (2.23) contain significant

switching frequency components, so a low pass filter (LPF) is applied to filter out these

high-frequency components, resulting in the flux estimate vector

ψ̂dq
s,LPF(s) =

ωLPF

s+ ωLPF

ψ̂dq
s (s), (2.27)

where ωLPF is the LPF cutoff frequency.

This approach allows for the easy derivation of d- and q-axis flux estimates based on

the steady state, so it is commonly used in many industries to obtain the parameters

needed to create experiment-based lookup tables (LUTs). However, during transient

states, this method produces significant estimation errors resembling spikes, distorts

the magnitude and phase due to the cut-off frequency of the LPF, and is especially

unsuitable for low-speed regions [45], [46], making it inappropriate for online estimation.
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2.3.2 Voltage and Current Model-based Flux Linkage Estimator

Voltage Model

The machine dynamic model in (2.5) can be rearranged as a flux-based dynamic model

d

dt
ψαβ
s (t) = uαβs (t)−Rsi

αβ
s (t), (2.28)

which is defined as the voltage model [5] for the flux linkage estimation. By purely

integrating the voltage model in (2.28), the flux estimate vector can be derived as

follows

ψαβ
s,int(t) =

∫ t

0

(
uαβ∗s (τ)− R̂si

αβ
s (τ)

)
dτ +ψαβ

s,int(0), (2.29)

whereψαβ
s,int := (ψαs,int, ψ

β
s,int)

⊤ is the integration result of the voltage model andψαβ
s,int(0) :=

(ψαs,int(0), ψ
β
s,int(0))

⊤ is the flux estimate vector of the current model is the initial value

of the flux vector. However, if there are errors in the input voltages uαβ∗s and initial

value ψαβ
s,int(0), or if sensor biases or inverter nonlinearities are present, the flux estimate

obtained from simple integration will contain estimation errors (DC offset).

To filter out the low-frequency DC offset components, a high-pass filter (HPF) is

commonly applied to the flux estimate vector

ψ̂αβ
s,v(s) =

s

s+ ωHPF

× 1

s
×
[
uαβ∗s (s)− R̂si

αβ
s (s)

]
=

1

s+ ωHPF

×
[
uαβ∗s (s)− R̂si

αβ
s (s)

]
(2.30)
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in the S-domain [47], [48], where ψ̂αβ
s,v := (ψ̂αs,v, ψ̂

β
s,v)

⊤ is the flux estimate vector of the

voltage model and ωHPF is the cutoff frequency of the HPF.

While this approach performs well at high speeds (only in steady state), it becomes

sensitive to filter gain settings near the cutoff frequency of the HPF, especially in

low-speed regions, significantly distorting the magnitude and phase of the estimates.

Current Model

The flux linkage model in (2.10) is defined as the current model [5] and this flux vector

is represented by the nominal inductance Ldqs,0 and permanent flux ψdq
pm,0

ψ̂dq
s,i = Ldqs,0i

dq
s +ψpm,0, Ldqs,0 =

Lds,0 0

0 Lqs,0

 ,ψdq
pm,0 =

ψpm,0
0

, (2.31)

where ψ̂dq
s,i := (ψ̂qs,i, ψ̂

q
s,i)

⊤ is the flux estimate vector of the current model in the (d,q)-

reference frame.

This approach provides relatively robust flux estimation in low-speed and low-

current regions. However, it cannot deal with the inaccuracies of machine parame-

ters caused by magnetic saturation and temperature variations in permanent magnets,

resulting in estimation errors.

Hybrid Model

To overcome the disadvantages of the aforementioned voltage and current models, a

Gopinath-style observer has been proposed, which uses the current model in low-speed
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Figure 2.7: Block diagram of the voltage and current model-based flux linkage estima-
tor.

regions and the voltage model in high-speed regions [49], [50], [51], [52]. This observer

uses a proportional-integral (PI) filter to smoothly transition between the flux estimates

of the two models near the crossover frequency. The flux linkage estimate vector

ψ̂αβ
s,vi(s) =

s2

s2 + 2ξωvis+ ω2
vi

ψ̂αβ
s,v(s) +

2ξωvis+ ω2
vi

s2 + 2ξωvis+ ω2
vi

R−1(θr)ψ̂
dq
s,i(s) (2.32)

in the (α,β)-reference frame can be derived, where ψ̂αβ
s,vi := (ψ̂αs,vi, ψ̂

β
s,vi)

⊤ represents

the flux estimate vector of the voltage-current hybrid model, and ξ and ωvi denote the

damping ratio and the natural frequency of the PI filter, respectively. Figure 2.7 shows

the block diagram of the flux observer based on the conventional voltage and current

models.

Although this approach can be used to estimate flux linkages over a wide operating

range, variations in the nominal parameters used in the current model can lead to
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a substantial decrease in estimation performance, especially during transient states.

To address these drawbacks and ensure robustness against parameter variations, a

modified flux observer for the voltage-current-based estimation model was presented in

[53], where the flux linkage errors caused by parameter inaccuracies can be determined

by the output of the integral controller at steady state.

However, this approach can significantly degrade estimation performance at low

speeds because the reciprocal of the rotor speed affects the flux estimates. Addition-

ally, there has been insufficient research on improving estimation performance during

transient states, and there is a lack of information on selecting the cutoff frequency for

the PI filter. Without precise criteria for filter design, phase, and magnitude distortions

can occur in the estimates, significantly affecting estimation performance, especially

during transient states.

2.3.3 Disturbance Observer-based Flux Linkage Estimator [1]

The novel approach of estimating nonlinear flux linkages in the time domain using

a disturbance observer-based state observer was introduced in [1]. This estimator is

very simple and highly effective for nonlinear flux linkage estimation. The key idea is

to separate the d-q axis flux linkage vector in (2.10) into a linear term Ls,0i
dq
s and a

nonlinear flux linkage term ∆ψdq
s (idqs ), i.e.

ψdq
s (t) = Ldqs,0i

dq
s (t) +

(
Ldqs − Ldqs,0

)
idqs (t) +ψdq

pm︸ ︷︷ ︸
=:∆ψdqs (idqs )=∆ψdqs (t)

⇐=⇒ idqs (t) = Ldqs,0
−1 (

ψdq
s (t)−∆ψdq

s (t)
)

(2.33)
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with constant (but arbitrarily) nominal (static) inductance matrix Ldqs,0 ∈ R2×2 and

nonlinear flux vector ∆ψdq
s := (∆ψds ,∆ψ

q
s)

⊤, including cross-coupling and saturation

effects. The time derivative of the nonlinear flux linkage in (2.33)

d

dt
∆ψdq

s = L̇dqs idqs +
(
Ldqs − Ldqs,0

)
i̇dqs + ψ̇dq

pm︸ ︷︷ ︸
=:ddqs (idqs ,i̇

dq
s )=ddqs (t)

(2.34)

can be derived, where the lumped disturbance vector ddqs := (dds, d
q
s)

⊤ can be expressed

as a nonlinear function of the current idqs and the derivative of the current i̇dqs . Since

it is very difficult to know the exact model for these disturbance signals, the physical

behaviors of the dynamics in (2.34) can be explained by the following assumption.

Assumption (A.2.1) The dynamics system in (2.9) are bounded-input-bounded-

output (BIBO) stable and the lumped disturbance vector in (2.34) is upper bounded

by

||ddqs ||
(2.34)

≤ ||L̇dqs ||||idqs ||+ ||Ldqs − Ldqs,0||||i̇dqs ||+ ||ψ̇dq
pm||.

Assumption (A.2.2) All parameters and signals in the (d,q)-reference frame in (2.33)

become constant in steady state (i.e. constant current and speed), so the nonlinear flux

linkage ∆ψdq
s has the characteristics

∆ψdq
s (t) =

(
Ldqs − Ldqs,0

)
idqs (t) +ψdq

pm = cdqs ,

with unknown but constant cdqs := (cds, c
q
s)

⊤ and their time derivatives become zero

vector (only) in steady state. Therefore, the disturbance vector ddqs in (2.34) becomes
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the zero vector O2, i.e.

ddqs → O2

(
L̇dqs → O2×2, i̇

dq
s → O2, ψ̇

dq
pm → O2 as t→∞

)

which means that these disturbance signals can be assumed to be step signals.

Substituting (2.33) into (2.9) leads to the altered dynamic model



d
dt
ψdq
s (t) = udqs (t)−RsL

dq
s,0

−1 (
ψdq
s (t)−∆ψdq

s (t)
)
− ωr(t)Jψdq

s (t)

d
dt
∆ψdq

s (t) = ddqs (t)

idq(t) = Ldqs,0
−1 (

ψdq
s (t)−∆ψdq

s (t)
)

. (2.35)

By defining the nonlinear flux linkage vector ∆ψdq
s as an extended state to be estimated,

the state-space model is expressed as


d

dt
x(t) = A(ωr)x(t) +Bu(t) + d(t)

y(t) = Cx(t)

(2.36)
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with

x :=

 ψdq
s

∆ψdq
s

 , u := udqs , y := idqs , O2×2 :=

0 0

0 0

 , I2×2 :=

1 0

0 1

 ,

A(ωr) :=

−RsL
dq
s,0

−1 − ωrJ RsL
dq
s,0

−1

O2×2 O2×2

 , B :=

 I2×2

O2×2

 , C :=

[
Ldqs,0

−1 −Ldqs,0
−1

]
,

d :=

[
O2 ddqs

]⊤
, O2 :=

[
0 0

]⊤
,

where x represents the state vector, u denotes the input vector, y represents the output

vector and d is the lumped disturbance vector. The matrix A(ωr) is the system matrix

with respect to ωr, B is the input matrix, and C is the output matrix.

To verify if the dynamic system in (2.36) is in an observable form for constant speed

ωr, the observability matrix

O(ωr) =



C

CA(ωr)

CA(ωr)
2

CA(ωr)
3


(2.37)

needs to be examined; since the matrix in (2.37) has full rank (i.e., O(ωr) = 4), all

states x can be observed. Accordingly, a linear observer can be designed as follows


d

dt
x̂(t) = [A(ωr)− F(ωr)C] x̂(t) +Bu(t) + F(ωr)y(t)

ŷ(t) = Cx̂(t)

, (2.38)

where x̂ and ŷ represent the estimated vector of x and y, respectively, and F(ωr) ∈ R4×2
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Figure 2.8: Observer block diagram for DOB-FLE.

denotes the gain matrix of the observer and depends on the electrical angular speed.

To analyze the stability of the estimation convergence, subtracting (2.38) from (2.36)

leads to the estimation error dynamics

d

dt
e(t) = [A(ωr)− F(ωr)C]x(t)− d(t) (2.39)

with the estimation error

x̃(t) := x̂(t)− x(t),

where d → 0 as t → ∞, recalling Assumption (A.2.1) and Assumption (A.2.2). If the

gain matrix F(ωr) is designed such that A−F(ωr)C becomes a stable Hurwitz matrix

(i.e., with the desired eigenvalues or poles within the negative complex half-plane),

the estimation error x̃ will decay exponentially and asymptotically to the equilibrium

point. Figure 2.8 shows the observer block diagrams for DOB-FLE.
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DOB-FLE separates the stator flux linkage vectorψdq
s into a linear flux with nominal

inductance Ldqs,0 and the remaining nonlinear flux term ∆ψdq
s , assuming this nonlinear

flux term as a constant disturbance signal (i.e. step signal). Therefore, this approach

allows for exponential estimation of the nonlinear flux term through a simple linear

observer. However, in transient states where the current ramps up or down, the dis-

turbance signals are time-varying with a certain slope rather than constant, causing

the magnitude of the disturbance d in (2.36) to increase. Additionally, if an inaccurate

nominal inductance is used in the observer, the norm of the disturbance vector ∥d∥

increases, leading to significant transient estimation errors.
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Chapter 3

Proposed Methods for Online Stator Flux

Linkage Estimation

Since the measurements available from the SMs outputs are limited to stator current,

electrical angular velocity, and position, it is not possible to directly estimate the flux

linkage using a state observer designed based on the flux dynamics models in (2.9) and

(2.28) (unobservable model). Section 2.3.2 introduced a flux estimation method using

a PI filter-based hybrid model to remove DC offsets occurring from purely integrating

the stator flux linkage dynamics in (2.28). However, the cutoff frequency of the filters

degrades the transient estimation performance. Specifically, in control methods like

FCS-MPC, using filters causes magnitude and phase distortions of the estimates due

to filtered specific frequencies in the voltage input [54]. Section 2.3.3 presented a method

to estimate flux linkage by separating it into a linear flux term with nominal inductance

and the remaining nonlinear flux term, extending this as an extended disturbance state

to make it observable, and designing a state observer in the time domain. However, the

flux estimation performance depends on the accuracy of the nominal parameter, and

if it is inaccurate, the transient estimation performance may deteriorate.

In this chapter, two flux linkage estimators that can improve the estimation per-

formance of existing flux estimators are proposed: the Extended State Observer-based
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Flux Linkage Estimator (ESO-FLE) and the Integration Error and Parameter Update-

Based Flux Linkage Estimator (IE-PU-FLE). The main contributions of these estima-

tors are (i) the development of an observable model based on the stator flux linkage

dynamics, (ii) the design of the state observer in the time domain to prevent mag-

nitude and phase distortion of the estimates caused by filters (i.e. LPF and HPF),

especially in FCS-MPC switching method, and (iii) the reduction of dependence on

nominal parameters used in the estimators, thereby improving transient estimation

performance.

3.1 Extended State Observer-based Flux Linkage Estimator [2]

The DOB-FLE in Section 2.3.3 defines the nonlinear flux ∆ψdq
s as a disturbance

step signal based on assumptions (A.2.1) and (A.2.2), and extends it as an additional

state to be estimated. However, while this approach exhibits excellent estimation per-

formance in steady state, its transient estimation performance is determined by the

accuracy of the nominal inductance parameter Ldqs,0 used in the estimator. It means

that the transient estimation performance depends on the parameter accuracy, and if

the parameters are inaccurate, the nonlinear flux linkage ∆ψdq
s may be time-varying

with a constant slope in transient state. In this section, to improve the transient esti-

mation performance of the DOB-FLE, an extended state observer-based flux linkage

estimator (ESO-FLE) is proposed. The key idea is to define the nonlinear flux ∆ψdq
s as

a ramp signal with a constant slope and estimate it by extending this constant slope

as an additional state to be estimated.
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The nonlinear flux linkage ∆ψdq
s (i.e. step disturbance signal) in Assumption (A.2.1)

can be assumed as ramp disturbance signals

∆ψdq
s (t) =

(
Ldqs − Ldqs,0

)
idqs (t) +ψdq

pm = cdqs + ldqs t, (3.1)

with unknown but constant slope ldqs := (lds , l
q
s)

⊤, which is extended the additional

state to be estimated. The time derivative of the nonlinear flux linkage in (3.1) can be

expressed as

d

dt
∆ψdq

s = L̇dqs idqs +
(
Ldqs − Ldqs,0

)
i̇dqs + ψ̇dq

pm︸ ︷︷ ︸
(2.34)
= ddqs (t)

= ldqs (t), (3.2)

where, the time derivative of the constant slope ldqs in (3.2) is represented as

d

dt
ldqs = L̈dqs idqs + 2L̇dqs i̇dqs +

(
Ldqs − Ldqs,0

)
ïdqs + ψ̈dq

pm︸ ︷︷ ︸
=:ddq,ls (t)→0 as t→∞

, (3.3)

with the lumped disturbance vector ddq,ls := (dd,ls , d
q,l
s )⊤. Recalling Assumption (A.2.1),

the lumped disturbance vector ddq,ls can be upper bounded (all parameters and signals

become constant in steady state) and becomes zero in steady state. Accordingly, the
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altered dynamic model is summarized as follows



d
dt
ψdq
s (t) = udqs (t)−RsL

dq
s,0

−1 (
ψdq
s (t)−∆ψdq

s (t)
)
− ωr(t)Jψdq

s (t)

d
dt
∆ψdq

s (t) = ldqs (t)

d
dt
ldqs (t) = ddq,ls (t)

idq(t) = Ldqs,0
−1 (

ψdq
s (t)−∆ψdq

s (t)
)

. (3.4)

Based on the dynamics in (3.4), the state-space model


d

dt
x(t) = A(ωr)x(t) +Bu(t) + d(t)

y(t) = Cx(t)

(3.5)

with

x :=


ψdq
s

∆ψdq
s

ldqs

 , u := udqs , y := idqs , O2×2 :=

0 0

0 0

 , I2×2 :=

1 0

0 1

 ,

A(ωr) :=


−RsL

dq
s,0

−1 − ωrJ RsL
dq
s,0

−1
O2×2

O2×2 O2×2 I2×2

O2×2 O2×2 O2×2

 ,B :=


I2×2

O2×2

O2×2

 ,C :=


Ldqs,0

−1

−Ldqs,0
−1

O2×2



⊤

,

d :=

[
O2 O2 ddq,ls

]⊤
, O2 :=

[
0 0

]⊤
,

where x represents the state vector, u denotes the input vector, y represents the output

vector and d is the lumped disturbance vector. The matrix A(ωr) is the system matrix
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with respect to ωr, B is the input matrix, and C is the output matrix.

To analyze whether the states of the dynamic system in (3.4) are fully observable,

the observability matrix is analyzed (for constant ωr), i.e.

O(ωr) =



C

CA(ωr)

...

CA(ωr)
5


, (3.6)

which is evaluated using the first three rows of O(ωr) for simplicity. Consequently, the

observability matrix has a full rank (i.e., O(ωr) = 6) if ωr ̸= 0, and the state x is

(locally) fully observable. The method for designing an observer for flux estimation is

the same as that mentioned in DOB-FLE.

ESO-FLE assumes the nonlinear flux as a time-varying ramp disturbance signal

with a constant slope and extends this slope as an additional state to be estimated.

This approach improves transient estimation performance by considering the rapidly

changing current behavior or additional disturbance signals caused by incorrect nominal

inductance. However, if noise or uncertainties exist in the extended states, the estimates

become highly sensitive to the observer’s gain matrix, so it is crucial to select the

optimal gain accordingly.
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3.2 Integration Error Estimation and Parameter Update-Based Flux Link-

age Estimator

As above mentioned, purely integrating the voltage model in (2.28) results in the

actual flux linkage in the (α,β)-reference frame and the integration errors caused by

discrepancies. Therefore, this section presents (i) an observable model that can directly

estimate these integration errors and proposes a state observer in the time domain that

directly compensates for these integration errors from the integration results. Addition-

ally, since the selection of the nominal inductance used in the observer determines the

transient estimation performance, this section proposes (ii) a method to update this

value to reflect the actual value, thereby improving transient estimation performance.

Furthermore, (iii) an adaptive observer that is robust to parameter variations is sug-

gested.

3.2.1 Flux Linkage Estimation based on Integration Error Estimation

Flux Model Reformulation for Integration Error Estimation

The pure integration results of the voltage model in (2.28) can be physically separated

into the actual flux linkage term ψαβ
s and the integration error term Oαβ

s , which is

accumulated due to input and initial value errors [54], i.e.

ψαβ
s,int(t) =

∫ t

0

(
uαβ∗s (τ)− R̂si

αβ
s (τ)

)
dτ +ψαβ

s,int(0)

= ψαβ
s (t) +Oαβ

s (t) (3.7)
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with ψαβ
s := (ψαs , ψ

β
s )
T and Oαβ

s := (Oα
s , O

β
s )
T . The d-q axis flux linkages in (2.10) can

be rearranged by expressing them as

ψdq
s (t) = Ldqs (t)idqs (t) +ψdq

pm(t)

= Lqs(t)i
dq
s (t) +


(Lds(t)− Lqs(t))ids(t) + ψpm(t)︸ ︷︷ ︸

=:∆ψds (t)

0

 (3.8)

using only the q-axis inductance as a proportional constant, where ∆ψds denotes the

d-axis nonlinear flux linkage caused by the saliency of the SMs rotor and the permanent

magnetic flux linkage.

By applying the inverse of the simplified Park transformation in (2.8) to (3.8), the

stator flux linkage vector in the (α,β)-reference frame can be obtained as follows

ψαβ
s (t) = Lqs(t)i

αβ
s (t) +P(θr)∆ψ

d
s (t) (3.9)

= L̂qs(t)i
αβ
s (t) + (Lqs(t)− L̂qs(t))iαβ(t) +P(θr)∆ψ

d
s (t)︸ ︷︷ ︸

=:∆ψαβs (t)

, (3.10)

where L̂q denotes the estimate of Lq, P(θr) := [cos θ, sin θ]⊤ represents the rotational

vector, and ∆ψαβ
s := (∆ψαs ,∆ψ

β
s )

⊤ denotes the nonlinear flux linkage vector rotating in

circular motion (only in steady state) in the (α,β)-reference frame, which is caused by

inaccurate q-axis static (average) inductance Lqs and ∆ψds in (3.8). Substituting (3.10)
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into (3.7) leads to the altered integration results

ψαβ
s,int(t) = L̂qs(t)i

αβ
s (t) + ∆ψαβ

s (t) +Oαβ
s (t). (3.11)

Computing the time derivative of the rotating nonlinear flux ∆ψαβ
s in (3.10) directly

yields

d

dt
∆ψαβ

s (t) = ωr(t)J
(
P(θr)∆ψ

d
s (t) + L̃qs(t)i

αβ
s (t)

)
︸ ︷︷ ︸

(3.10)
= ∆ψαβs

+ L̃qs(t)
(
i̇αβs (t)− ωr(t)Jiαβs (t)

)
+ ˙̃Lqs(t)i

αβ
s (t) +P(θr)∆ψ̇

d
s (t)︸ ︷︷ ︸

=:dαβ,ψs (t)

= ωr(t)J∆ψ
αβ
s (t) + dαβ,ψs (t)

(3.12)

in the (α, β)-reference, where L̃qs := Lqs−L̂qs denotes the parameter estimation error, and

dαβ,ψs := (dα,ψs , dβ,ψs )⊤ represents the lumped disturbance vector caused by the induc-

tance parameter variation and nonlinear flux ∆ψds in (3.8). The physical behaviors of

the lumped disturbance dαβ,ψs in (3.12) can be explained by the following assumptions.

Assumption (A.3.1) The dynamics system in (2.5) are bounded-input-bounded-

output (BIBO) stable and the lumped disturbance vector dαβ,ψs in (3.12) is upper

bounded by

||dαβ,ψs ||
(3.12)

≤ ||L̃qs||||i̇αβs ||+
(
||ωr||+ || ˙̃Lqs||

)
||iαβs ||+ ||∆ψ̇ds ||.

Assumption (A.3.2) In view of Assumption (A.2.1) and Assumption (A.2.2), all
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parameters and signals in the (d,q)-reference frame become constant, and their time

derivatives become zero (only) in steady state. Meanwhile, the time derivative of the

current vector in the (α,β)-reference frame is always in a circular motion with the

electrical angular velocity ωr (only) in steady state [55]. Thus, the lumped disturbance

vector dαβ,ψs in the (α,β)-reference frame becomes the zero vector O2, i.e.

dαβ,ψs → O2

(
˙̃Lqs → 0, ∆ψ̇ds → 0, i̇αβs → ωrJi

αβ
s as t→∞

)

Likewise, computing the time derivative of the integration error vectorOαβ
s in (3.11)

directly yields

d

dt
Oαβ
s (t) = dαβ,os (t) (3.13)

in the (α, β)-reference with the disturbance vector of integration error dαβ,os := (dα,os , dβ,os )⊤

(only) in transient state, which can be explained by the following assumption.

Assumption (A.3.3) In view of Assumption (A.3.1), the integration error vector

dαβ,os is bounded and consists of low-frequency components such as DC offsets in the

(α,β)-reference frame. Therefore, the time derivative of the integration error becomes

zero (only) in the steady state (i.e., dαβ,os → O2 as t → ∞). The concepts of these

assumptions are illustrated in Fig. 3.1.

Considering Assumption (A.3.1)−(A.3.2), the output in (3.11) and the dynamics
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Figure 3.1: Components of the integration result ψαβ
s,int in steady state.

in (3.12) and (3.13) are summarized as follows



d
dt
∆ψαβ

s (t) = ωr(t)J∆ψ
αβ
s (t) + dαβ,ψs (t)

d
dt
Oαβ
s (t) = dαβ,os (t)

ψαβ
s,int(t) = L̂qs(t)i

αβ
s (t) + ∆ψαβ

s (t) +Oαβ
s (t)

. (3.14)

Observable State-Space Model

By estimating ∆ψαβ
s and Oαβ

s and compensating for the integration error vector Oαβ
s

from the integration result vector of (3.11), the stator flux linkage vector ψαβ
s can be
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estimated. Thus, based on (3.14), the state-space model is expressed as


d

dt
x(t) = A(ωr)x(t) + dt(t)

y(t) = Cx(t) +Ψ(t)θ(t)

(3.15)

with

x :=

∆ψαβ
s

Oαβ
s

 , y := ψαβ
s,int, dt :=

dαβ,ψs

dαβ,os

 , Ψ := iαβ, θ := L̂q,

A(ωr) :=

 ωrJ O2×2

O2×2 O2×2

 , C :=

[
I2×2 I2×2

]
, O2×2 :=

0 0

0 0

 , I2×2 :=

1 0

0 1

 ,

where x represents the state vector, y is the output vector, d is the disturbance vector,

C is the output matrix, A(ωr) is the time-varying system matrix, Ψ represents the

current vector in the (α,β)-reference frame, and θ denotes an estimate of the q-axis

inductance parameter, which is updated online to reduce the magnitude of the dis-

turbance vector d and improve transient estimation performance. These matrices and

vectors are all piecewise continuous and uniformly bounded in time.

To verify whether the dynamic system in (3.14) is observable or not, the observ-
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ability matrix of the state-space model in (3.14) is given by

O(ωr) =



C

CA(ωr)

CA(ωr)
2

CA(ωr)
3


=



I2×2 I2×2

ωrJ O2×2

(ωrJ)
2 O2×2

(ωrJ)
3 O2×2


, (3.16)

which has a full rank (i.e., O(ωr) = 4) except for ωr = 0, so x is fully observable at

all constant nonzero electrical angular velocities (as it is slowly varying compared to

electrical quantities), similar to the DOB-FLE and ESO-FLE methods.

A Liner State Observer Design

A linear state observer for the state-space model in (3.14) is designed as follows


d

dt
x̂(t) = A(ωr)x̂(t) + F(ωr) (y(t)−Cx̂−Ψ(t)θ(t))

ŷ(t) = Cx̂(t) +Ψ(t)θ(t)

(3.17)

where x̂ and ŷ represent the estimates of x and y, respectively. The observer gain matrix

F(ωr) ∈ R4×2 has to be determined with the electrical angular velocity and A(ωr) (i.e.

speed-dependant). The dynamic system in (3.15) represents a MIMO (Multi-Input-

Multi-Output) system with more variables to estimate than the output equations of

the observer. Therefore, F(ωr) must be designed using eigenstructure assignment as

described in [56] or robust pole assignment as detailed in [57] to accurately place the

four closed-loop poles of the observer in (3.17), thus achieving the desired bandwidth
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of the stable eigenvalues (equivalent to the poles) of the closed-loop observer matrix

A(ωr)−F(ωr)C. In this study, to determine the observer gain matrix F(ωr), a robust

pole assignment method in [57] is utilized to place the system poles at the desired

(stable) eigenvalues (i.e. establishing a Hurwitz observer matrix A(ωr)−F(ωr)C with

eigenvalues having negative real parts), which can be calculated using the MATLAB

command place.

Accordingly, by subtracting (3.15) from (3.17), the estimation error dynamics

d

dt
x̃(t) = [A(ωr)− F(ωr)C] x̃(t)− dt(t). (3.18)

with estimation error x̃ := x̂− x are exponentially stable as the disturbance vector dt

eventually becomes zero in steady state based on Assumption (A.3.1)−(A.3.3).

Finally, the estimate of the stator flux linkage vector ψ̂αβ
s in the (α,β)-reference

frame can be obtained by subtracting the integration error estimate Ôαβ
s from the

integration result ψ̂αβ
s,int, i.e.

ψ̂αβ
s (t) = ψ̂αβ

s,int(t)− Ôαβ
s (t)

= y(t)−Dx̂(t), (3.19)

with D := [O2×2 I2×2]. By applying the coordinate transformation in (2.8) to the

(α, β)-axis estimates in (3.19), the flux estimates in the (d,q)-reference frame can be

obtained as follows

ψ̂dq
s (t) = R(θr)ψ̂

αβ
s (t). (3.20)
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Figure 3.2: Proposed stator flux linkage estimator based on the integration error esti-
mator

3.2.2 Parameter Update for Improving Transient Estimation Performance

Recalling (3.12) and Assumption (A.3.1), the transient estimation performance of

(3.20) depends on the accuracy of the q-axis inductance parameter used in the ob-

server of (3.17). Therefore, if the parameter inaccuracy increases, the magnitude of

L̃q in (3.12) increases, leading to a larger disturbance vector dαβ,ψs , which ultimately

degrades transient estimation performance. Thus, it is necessary to estimate the q-axis

inductance online based on the stator current and update it to the actual value to

improve transient estimation performance.
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Parameter Identification Using a Recursive Least-Square Method

To estimate the parameters online, the Recursive Least Squares (RLS) method with a

forgetting factor for continuous time, which is robust to signal noise and inaccuracies,

is generally applied [58]. For parameter identification, the linear parametric model for

the q-axis flux linkage can be expressed as

ψqs(t) = Lqs(t)i
q
s(t), ψ̂qs(t)→ ψqs(t) as t →∞, (3.21)

where the flux estimate ψ̂qs is used as the output of the linear parametric model since

the q-axis flux linkage ψqs cannot be directly measured (the estimation error x̃ asymp-

totically converges to the zero vector O2 as t → ∞). To estimate the unknown q-axis

inductance parameter, the linear model in (3.21) is rearranged as follows

z = θ∗u = ψ̂qs(t), θ
∗ = Lqs(t), u = iqs(t), (3.22)

where z represents the output signals of the parametric model, θ∗ is the unknown pa-

rameter to be estimated, and u represents the input signals, respectively. The estimate

of z in (3.22) can be expressed as

ẑ = θu, θ = L̂qs(t), (3.23)
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where ẑ and θ denote the estimate of z and the estimated parameter of θ∗, respectively

and the parameter estimation error

ϵ = z − ẑ = z − θu (3.24)

can be derived. Therefore, to minimize the parameter estimation error in (3.24) and

identify the parameter θ using a convex integral objective function, the continuous-time

recursive least-squares parameter update algorithm (see Appendix A)

θ̇ = Γϵ⊤u

Γ̇ = βΓ− Γu⊤uΓ

(3.25)

with the covariance Γ and the forgetting factor β. Therefore, if the input signal u

satisfies the PE (Persistent Excitation) condition and θ and θ̇ are uniformly bounded,

then θ will eventually converge exponentially to the actual parameter θ∗. Therefore, by

using the RLS algorithm in (3.25) to update the q-axis inductance parameter in the

observer of (3.17) online, the transient estimation performance can be improved.

Adaptive Observer based on the Parameter Update

The flux estimation error made by the inductance parameter (L̂qs) update in (3.25) can

be compensated for by an adaptive observer that adds an auxiliary term to the flux

estimation dynamics. The α-β axis rotating nonlinear flux linkage vector ∆ψαβ
s in (3.9)
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can be redefined as

ψαβ
s (t) = Lqs(t)i

αβ
s (t) +P(θr)∆ψ

d
s (t)︸ ︷︷ ︸

=:∆ψαβs (t)

, (3.26)

where the time derivative of the rotating nonlinear flux in (3.26) leads

d

dt
∆ψαβ

s (t) = ωr(t)JP(θr)∆ψ
d
s (t)︸ ︷︷ ︸

(3.26)
= ∆ψαβs

+P(θr)∆ψ̇
d
s (t)︸ ︷︷ ︸

=:dαβ,ψs (t)

= ωr(t)J∆ψ
αβ
s (t) + dαβ,ψs (t)

, (3.27)

where the disturbance vector dαβ,ψs converges to zero in steady state, recalling Assump-

tion (A.2.2). Accordingly, the output (ψαβ
s,int) and dynamics (∆ψ̇αβ

s ,Ȯαβ
s ) are summa-

rized as follows



d
dt
∆ψαβ

s (t) = ωr(t)J∆ψ
αβ
s (t) + dαβ,ψs (t)

d
dt
Oαβ
s (t) = dαβ,os (t)

ψαβ
s,int(t) = Lqs(t)i

αβ
s (t) + ∆ψαβ

s (t) +Oαβ
s (t)

, (3.28)

where the state-space model in (3.28) is the same as (3.15) except for θ := Lqs. Thus,

an adaptive observer


d

dt
x̂(t) = A(ωr)x̂+ F(ωr)

(
y(t)−Cx̂(t)−Ψ(t)θ̂(t)

)
+w(t)

ŷ(t) = Cx̂(t) +Ψ(t)θ̂(t)

(3.29)
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can be designed, where θ := Lq is an unknown actual inductance parameter and w

is an auxiliary term in order to compensate the estimation error made by parameter

estimate θ̂. Since there are no changes in the A(ωr) and C matrices, the rank of

the observability matrix remains the same in (3.15), ensuring that all states can be

observed. By subtracting (3.15) from (3.29), the estimation error dynamics

d

dt
x̃(t) = [A(ωr)− F(ωr)C] x̃(t)− F(ωr)Ψ(t)θ̃(t) +w(t)− dt(t) (3.30)

with the parameter estimation error θ̃ := θ̂ − θ. To design an adaptation law that

compensates for the term F(ωr)Ψθ̃, which affects the convergence of the estimation

error dynamics in (3.30) due to parameter estimation error, with an auxiliary term w,

the following assumption is introduced [59].

Assumption (A.3.4) The state estimation error x̃, parameter estimation error θ̃,

and the time-varying matrix Υ can be expressed as a linear combination of η [60] as

follows

η(t) = x̃(t)−Υ(t)θ̃(t), (3.31)

Considering Assumption (A.3.4), the time derivative of (3.31) can be expressed as

d

dt
η(t) = ˙̃x(t)−Υ(t) ˙̃θ(t)− Υ̇(t)θ̃(t) (3.32)

= (A(ωr)− F(ωr)C)︸ ︷︷ ︸
:=Ac

x̃(t)− F(ωr)Ψ(t)θ̃(t) +w(t)− dt(t)−Υ ˙̃θ(t)− Υ̇θ̃(t)

= Acη(t) +
[
AcΥ(t)− F(ωr)Ψ(t)− Υ̇(t)

]
θ̃(t) +w(t)−Υ(t) ˙̃θ(t)− dt(t)

– 51 –



where θ̇ becomes zero as t→∞. Therefore, to make the equation in (3.32) stable, the

θ̃ and ˙̃θ terms can be eliminated by

Υ̇(t) = AcΥ(t)− F(ωr)Ψ(t)

w(t) = Υ(t) ˙̃θ(t) = Υ(t)
˙̂
θ(t)

, (3.33)

where the equation in (3.32) can be rearranged as

η̇(t) = Acη(t)− dt(t). (3.34)

If the observer matrix Ac becomes Hurwitz (stable) and under Assumption (A.2.2)

and Assumption (A.3.3) (dt → 0 as t→∞) in steady state, η is exponentially stable,

resulting in x̂→ x and θ̂ → θ. The adaptive algorithm for the adaptive observer based

on the parameter update is summarized as follows



Υ̇(t) = AcΥ(t)− F(ωr)Ψ(t)

w(t) = Υ(t)
˙̂
θ(t)

˙̂
θ = Γϵ⊤u

Γ̇ = βΓ− Γu⊤uΓ

, (3.35)

with

z = ψ̂qs(t), u = iqs, θ̂ = L̂qs(t), ϵ = z − θ̂u.

Therefore, the proposed adaptive observer compensates for the flux estimation error
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caused by the inductance parameter error estimated by RLS by adding an auxiliary

term w to the estimation dynamics through an adaptation law. This approach reduces

the norm of the disturbance vector ∥dαβ,ψs ∥, improving transient estimation perfor-

mance and ensuring robustness against parameter variations in the observer.
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Chapter 4

Simulation Validations

Simulation Setup

To verify the estimation performance of the two proposed flux estimators, the ‘Three-phase

PMSM Traction Drive’ example for the 35kW IPMSM provided by MATLAB/Simulink

(R2023b), which utilizes the FEM-parameterized PMSM library, was used. Figure 4.1

shows the overall simulation environment of the PMSM, where the controller was modi-

fied for the flux linkage estimator and the FCS-MPC current controller. The simulation

specifications and flux linkage maps are listed in Table 4.1 and shown in Fig.4.2. To

implement FCS-MPC-based current control, a numerical reference generator presented

Modified

Finite Control Set

MPC

Current Controller

Current Reference 

Generator

cmd

eT *

dqi

dL qL pm

Experiment Based

LUTs 

*( )nS
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*,dq dq

s su i

ˆ dq

sψ

dq

si

dq

si

dcU

Figure 4.1: MATLAB/Simulink simulation environment for IPMSM control
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Table 4.1: Specifications of the IPMSM Drive

Parameter Value

Base speed 2000 rpm
Maximum torque 180 Nm
DC-link voltage (Udc) 325 V
Maximum stator current (Imax) 350 A
Rotor Inertia 0.1234 kgm2

Number of pole pairs (np) 8
Stator winding resistance (Rs) 10.9 mΩ
Time sampling (Ts) 25 µs

(a) (b)

Figure 4.2: Nonlinear flux linkage maps of the IPMSM (a) d-axis and (b) q-axis.

in [15] was used to convert the torque command into current references. Additionally,

the sampling time for the sensors was set to 20 kHz, and the sampling time for the flux

linkage estimator and FCS-MPC switching calculation was set to 40 kHz. The period

for the torque generator was set to 1 kHz. These control periods were determined using

the "state flow" library provided by MATLAB/Simulink.

To determine the gain matrices F (ωr) of all state observers (DOB-FLE, ESO-FLE,

and IE-PU-FLE) used for simulation verification, a robust pole assignment method

[57] was utilized to place the system poles at the desired (stable) eigenvalues. This
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can be easily achieved by using the MATLAB command "place" to calculate the gain

matrix F (ωr). Additionally, the feedback gain matrix F (ωr) was designed so that the

bandwidth of the stable eigenvalues of the matrix A(ωr) − F (ωr)C is approximately

100 Hz (628 rad/s) at a constant mechanical speed of 500 RPM for all flux linkage

estimators. This bandwidth was chosen to be about twice the settling time (50 Hz) of

the torque reference command, considering the estimation performance.

4.1 Validation of the Proposed ESO-FLE

The simulation scenarios for verifying the estimation performance of the proposed

ESO-FLE are as follows: (i) The estimation performance was verified using nominal

inductance (Ldqs,0), with the mechanical speed varying from 200 RPM to 1300 RPM and

the torque changing from -180 Nm to 180 Nm (In Fig. 4.3). (ii) The transient estimation

performance was examined using the guessed nominal inductance (L̂dqs,0 := 0.5Ldqs,0), with

a fixed speed of 500 RPM and the torque increasing from 0 to 180 Nm (In Fig. 4.4).

Table 4.2: Observer parameters for ESO-FLE

Parameter Value

Feedback gain matrix F(419 rad
s
) =


0.0782 −0.6481
0.6565 0.0919
−0.4008 −0.7540
0.7599 −0.3822
−1.4033 −162.11
166.06 1.2415


Nominal inductance Ldqs,0 =

[
0.25 0
0 0.28

]
mH

Guessed nominal inductance L̂dqs,0 = 0.5×
[
0.25 0
0 0.28

]
mH

– 56 –



In all scenarios, a gain matrix selected for a constant mechanical speed of 500 RPM

was used for the estimation. The observer parameters used to verify the estimation

performance of the proposed ESO-FLE are listed in Tab. 4.2

Figure 4.3 shows the flux linkage estimates, their estimation errors es := ψ
dq
s − ψ̂dq

s ,

and the operating conditions of the proposed ESO-FLE. At t = 0.05 seconds, when

the electrical torque starts increasing to 180 Nm, a large spike-like estimation error

occurred in the flux estimates during the transient state (during t = 0.05 s and t = 0.07

s). This is because the observer gain matrix F(ωr) was designed for a constant speed

of 500 rpm rather than varying with the mechanical speed, making the observer gain

sensitive in the low-speed region and affecting the estimation performance. However,

above 200 RPM, the flux linkage estimates closely tracked their true values under

dynamic operating conditions across a wide range of torque (-180 Nm to 180 Nm) and

speed (200 RPM to 1300 RPM). Thus, the simulation results in Fig. 4.3 demonstrated

that the proposed ESO-FLE shows good estimation performance in both transient and

steady states over a wide operating range using nominal inductance, thereby validating

its effectiveness.

Figure 4.4a shows the transient estimation performance results at a constant speed

of 500 RPM using the guessed nominal inductance, and Figure 4.4b shows the esti-

mation error norm ||es||, which quantitatively represents the estimation performance.

Here, because the finite control set MPC method directly determines the d-axis and

q-axis voltage inputs for the d-axis and q-axis current references, respectively, it seems

that the flux estimates include significant switching ripples in their estimation error
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norms. However, as shown in the simulation results of Fig. 4.4a and Fig. 4.4b, the
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Figure 4.3: Flux linkage estimates of the proposed ESO-FLE
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(a)

210−

(b)

Figure 4.4: Transient estimation performance of the proposed ESO-FLE (a) Flux link-
age estimates (b) The corresponding estimation error norm ||es||.

improved transient estimation performance despite parameter inaccuracies indicates

that assuming nonlinear flux linkage ∆ψdqs as ramp disturbance signals with a constant

slope is reasonable.

– 59 –



4.2 Validation of the Proposed IE-PU-FLE

Likewise, the ESO-FLE, the simulation scenarios for verifying the estimation per-

formance of the proposed IE-PU-FLE are as follows: (i) The estimation performance

was verified using q-axis nominal inductance (Lqs,0) under two conditions with a con-

stant mechanical speed of 500 RPM while the torque increased from 0 to 180 Nm,

and with the mechanical speed varying from 200 RPM to 1800 RPM while the torque

changed from -180 Nm to 180 Nm (In Figs. 4.5, 4.6 and 4.7). (ii) The transient estima-

tion performance was examined by updating the inaccurate initial nominal inductance

(L̂qs,0 := 2Lqs,0) to the actual inductance while the mechanical speed increased from 200

RPM to 1200 RPM and the torque frequently changed from -180 Nm to 180 Nm (In

Figs. 4.8 and 4.9). In all scenarios, a gain matrix selected for a constant mechanical

speed of 500 RPM was used for IE-PU-FLE. The observer parameters used to verify

the estimation performance of the proposed ESO-FLE are listed in Table 4.3.

Table 4.3: Observer parameters for IE-PU-FLE

Parameter Value

Feedback gain matrix F(419 rad
s
) =


1271.25 564.01
−545.63 1271.10
0.012 −977.27
964.47 8.82


Nominal inductance Lqs,0 = 0.28mH

Guessed nominal inductance L̂qs,0 = 2× 0.28mH

Forgetting factor β = 600
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(a)

(b)

Figure 4.5: Stator flux linkage estimates (a) in the (α, β)-reference frame and (b) in
the (d, q)-reference frame without using the integration error estimator.

Figures 4.5 and 4.6 show the estimation results without and with the integration

error estimator, respectively. Figure 4.5a demonstrates that the flux estimates had

offsets Oαβ
s in the (α,β)-reference frame due to inaccurate integration because the

integration error was not estimated and compensated.
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(a)

(b)

(c)

Figure 4.6: Stator flux linkage estimates (a) in the (α, β)-reference frame and (b) in
the (d, q)-reference frame using the integration error estimator. (c) The corresponding
integration estimates
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Figure 4.5b shows that these offsets in the (α,β)-reference frame were transformed

into oscillating components in the rotating (d,q)-reference frame, which deteriorated the

estimation performance. In contrast, Figure 4.6a shows that using the integration error

estimator, the integration error was compensated, allowing the estimates in the (α,β)-

reference frame to accurately track the true values. Consequently, as shown in Fig. 4.6b,

the estimates in the (d,q)-reference frame also accurately tracked the true values. This

accurate estimation was possible because the integration error was estimated online

and compensated in the integration result, as shown in Fig. 4.6c.

Figure 4.7 shows the flux linkage estimates and integration error estimates (ψ̂dq
s and

Ôαβ
s ) under different operating conditions for the proposed IE-PU-FLE. At t = 0.05

seconds, when the mechanical speed was 200 RPM and the torque increased from 0 to

180 Nm, there was an overshoot in the flux estimates due to the observer gain matrix

being designed for a fixed speed of 500 RPM, causing estimation errors. However,

excluding the low-speed region (after t = 0.07), even under varying torque conditions,

the proposed IE-PU-FLE accurately estimated and compensated for the integration

error with the fixed observer gain, demonstrating excellent estimation performance in

both transient and steady states. Therefore, it is demonstrated that the proposed IE-

PU-FLE significantly improves the transient and steady-state performance with the

nominal inductance parameter over a wide range of speeds.
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Figure 4.7: Stator flux linkage and integration error estimates in the (d,q)-reference
frame
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Figure 4.8: Proposed stator flux linkage estimator based on the integration error esti-
mator

Figure 4.8 shows the flux estimates (ψ̂dq
s ) and q-axis inductance estimates (L̂qs) for

the proposed IE-PU-FLE under different operating conditions when the nominal in-

ductance parameters are inaccurate. Where the mechanical speed increased linearly

from 200 RPM to 1200 RPM, the initial q-axis inductance was twice the actual value

from t = 0 to t = 0.02. However, from t = 0.02, as the torque (current) decreased

to -180 Nm, the inductance estimate became closer to the actual value, thereby re-

ducing the estimation error of the flux estimate in transient state. Additionally, when

the torque changed periodically, the q-axis inductance was updated online, improving

transient estimation performance. Therefore, the proposed IE-PU-FLE method, based

– 65 –



on an adaptive observer, was verified through extensive simulation scenarios to be ro-

bust against parameter variations by updating the observer’s q-axis inductance to the

actual value online across a wide range of operating conditions, thereby enhancing both

transient and steady-state estimation performance.

4.3 Performance Comparison between DOB-FLE and the Proposed Esti-

mators

To compare the flux estimation performance of the proposed ESO-FLE and IE-

PU-FLE with the existing DOB-FLE, the gain matrix F (ωr) was designed to have a

bandwidth of approximately 100 Hz for the observer feedback matrix A(ωr)−F (ωr)C

at a constant mechanical speed of 500 RPM. In this setup, the nominal inductance

parameters of the observers were inaccurately set to half of the actual values for each

case to compare the transient estimation performance.

Figure 4.9 shows the stator flux linkage estimates and estimation error norms of

IE-PU-FLE, ESO-FLE, and DOB-FLE in the (d,q)-reference frame, as well as the q-

axis inductance estimate of IE-PU-FLE, as the torque changes from -180 Nm to 180

Nm and mechanical speed varies from 200 RPM to 1000 RPM.

The estimates of DOB-FLE did not exhibit estimation errors in steady state, but

in transient state (especially under low-speed conditions between 0.05 seconds and

0.07 seconds), flux estimation errors occurred and did not converge to the true val-

ues. Because DOB-FLE assumes the nonlinear flux ∆ψdq
s as step signals, it can only

satisfy estimation performance in steady state. However, in the transient state, it fails
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Figure 4.9: Estimation performance comparison of the proposed ESO-FLE, IE-PU-
FLE, and DOB-FLE.

to account for additional disturbances caused by parameter inaccuracies, resulting in

significant estimation errors in the flux estimates.
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By contrast, as seen in Fig.4.9, ESO-FLE demonstrated improved transient perfor-

mance compared to DOB-FLE. This enhancement is attributed to ESO-FLE’s approach

of treating the nonlinear flux term ∆ψdq
s as time-varying ramp disturbance signals, un-

like DOB-FLE, which assumes these disturbances to be constants. It is also evident

that only the estimation error of ESO-FLE decreased compared to DOB-FLE during

transient states.

Furthermore, IE-PU-FLE demonstrated significant improvements in both transient

and steady-state estimation performance by using RLS to update the q-axis inductance

parameter in real-time and employing an adaptive observer to continuously compensate

for parameter errors, thereby improving the estimation performance, even when the

initial inductance parameters were inaccurately set. However, as shown in the q-axis

inductance estimates between t = 0.02 and 0.05, if the input signal does not satisfy the

PE condition or if the input signals are insufficient (i.e. d-q axis currents are small),

estimation errors in the inductance estimates may occur.
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Chapter 5

Conclusion and Future Work

Conclusion

In this thesis, two flux linkage estimators (ESO-FLE and IE-PU-FLE) were presented,

which are applicable to any nonlinear synchronous machine. Both estimators are de-

signed as state observers in the time domain, eliminating the need for applying filters

for estimation, thus avoiding any magnitude and phase distortions in the estimates.

Additionally, ESO-FLE assumes nonlinear flux as ramp disturbance signals, while IE-

PU-FLE uses RLS to estimate parameter variations online and compensates for pa-

rameter estimation errors with an adaptive observer, enabling both observers to handle

parameter inaccuracies and improve transient estimation performance. Simulation re-

sults obtained using a 35-kW PMSM drive demonstrated that the proposed estimator

closely tracked the true trajectories of the stator flux linkages under various operating

conditions with better transient performance than the conventional estimators.

Future Work

Future research will (i) focus on the optimal observer gain design to ensure stability and

convergence considering parameter and speed variations (e.g., gain design based on LMI

(Linear Matrix Inequality)), (ii) estimate flux linkage considering inverter nonlinearity

– 69 –



(e.g., estimated based on Neural Network) or core losses, (iii) extract static or dynamic

inductance based on online flux estimates (e.g., conducting optimal current control or

MTPA algorithm), and finally, validate the performance and robustness of the proposed

approach in the laboratory through experimental results.
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Appendix A

Recursive Least Square

The unknown parameters appear in a linear form, such as in the linear parametric

model

z = θ∗⊤u (A.1)

where z is the output signal, θ∗⊤ denotes the unknown parameter to be estimated, and

u represents the input signals. The estimate of z is expressed as

ẑ = θu, (A.2)

where ẑ and θ denote the estimate of z and the estimated parameter of θ∗, respectively

and the parameter estimation error is defined as

ϵ = z− ẑ = z− θ⊤u. (A.3)

To estimate the parameter θ∗, the integral cost function [58] is considered as follows:

J(θ) =
1

2

∫ t

0

e−β(t−τ) [z(τ)− θ(t)u(τ)]2 dτ + 1

2
e−βt(θ − θ0)⊤Q0(θ − θ0), (A.4)
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where Q0 > 0, β > 0, and θ0 = θ(0), which include discounting of past data and a

penalty on the initial estimate θ0 of θ∗. Since J(θ) is a convex function of θ at each

time t, the global minimum can be achieved when the gradient of the cost function is

zero, which gives θ(t) as follows:

θ(t) = Γ(t)

[
e−βtQ0θ0 +

∫ t

0

e−β(t−τ)z(τ)u(τ)dτ

]
, (A.5)

where

Γ(t) =

[
e−βtQ0 +

∫ t

0

e−β(t−τ)u(τ)⊤u(τ)dτ

]−1

, (A.6)

with Q0 > 0 and u⊤u being positive semidefinite, Γ(t) exists at each time t. By Using

the identity, the differential equation of Γ(t) can be expressed as

d

dt

(
ΓΓ−1

)
= Γ̇Γ−1 + Γ

d

dt

(
Γ−1

)
= 0,

Γ̇ = βΓ− Γu⊤uΓ, Γ(0) = Γ0 = Q−1
0 ,

(A.7)

Finally, differentiating the equation (3.26) with respect to t and using (3.25) and (3.28),

the continuous-time recursive least-squares parameter update algorithm with forgetting

factor can be expressed as

θ̇ = Γϵ⊤u. (A.8)

where Γ denotes the covariance matrix and β is called the forgetting factor. Therefore,

if the input signal u satisfies the PE (Persistent Excitation) condition and θ and θ̇

are uniformly bounded, then θ(t) will eventually converge exponentially to the actual
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parameter θ∗.
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