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Constrained Optimization-Based Neuro-Adaptive Control (CONAC)

for Euler-Lagrange Systems Under Weight and Input Constraints
Myeongseok Ryu, Donghwa Hong, and Kyunghwan Choi

Abstract—This study presents a constrained optimization-
based neuro-adaptive control (CONAC) for unknown Euler-
Lagrange systems subject to weight and convex input constraints.
A deep neural network (DNN) is employed to approximate
the ideal stabilizing control law while simultaneously learning
the unknown system dynamics and addressing both types of
constraints within a unified constrained optimization frame-
work. The adaptation law of DNN weights is formulated to
solve the defined constrained optimization problem, ensuring
satisfaction of first-order optimality conditions at steady state.
The controller’s stability is rigorously analyzed using Lyapunov
theory, guaranteeing bounded tracking errors and bounded DNN
weights. The proposed controller is validated through a real-time
implementation on a 2-DOF robotic manipulator, demonstrating
its effectiveness in achieving accurate trajectory tracking while
satisfying all imposed constraints.

Index Terms—Neuro-adaptive control, constrained optimiza-
tion, deep neural network, input constraint, weight constraint.

NOTATION

The Kronecker product is denoted by ⊗ [1, Chap. 7,
Def. 7.1.2]. A vector and a matrix are denoted by x =
[xi]i∈{1,··· ,n} ∈ Rn and A := [aij ]i∈{1,··· ,n},j∈{1,··· ,m}
∈ Rn×m, respectively. Given a matrix A ∈ Rn×m, rowi(A)
denotes the ith row of A. For the matrix A ∈ Rn×m,
vec(A) := (row1(A

⊤), · · · , rowm(A⊤))⊤ ∈ Rnm denotes
the vectorization of A. λmin(A) denotes the minimum eigen-
value of the matrix A ∈ Rn×n. The n×n identity and n×m
zero matrices are denoted by In and 0n×m, respectively.

I. INTRODUCTION

A. Background

MANY engineering systems, including those in
aerospace, robotics, and automotive applications, can

be modeled using Euler-Lagrange systems. These systems
are governed by dynamic equations derived from energy
principles and describe the motion of mechanical systems
with constraints. In practice, however, such systems often
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exhibit uncertainties due to unmodeled dynamics, parameter
variations, or external disturbances. These uncertainties can
significantly degrade control performance and, in some cases,
lead to instability. In worst cases, any prior knowledge of the
system dynamics may not be available, making it challenging
to design effective controllers. To address these challenges,
adaptive control methods have been widely employed to
ensure robust performance for uncertain or unknown systems
[2], [3].

More recently, neuro-adaptive control (NAC) approaches
have been introduced to approximate uncertain or unknown
system dynamics or entire control laws using neural net-
works (NNs) [4], [5]. NNs are well-known for their universal
approximation property, which allows them to approximate
any smooth function over a compact set with minimal error.
Various types of NNs have been utilized in NAC, including
simpler architectures like single-hidden layer (SHL) NNs
[6]–[8] and radial basis function (RBF) NNs [9], [10], as
well as more complex models like deep NNs (DNNs) [11]
and their variations. Conventionally, SHL and RBF NNs are
often employed to approximate uncertain or unknown system
dynamics or controllers due to their simplicity [8], [12]–[14].
However, since DNNs offer greater expressive power, making
them more effective for complex system approximations [15],
variations of DNNs, such as long short-term memory (LSTM)
networks for time-varying dynamics [16], physics-informed
NNs (PINNs) for leveraging physical system knowledge [17],
and convolutional NNs (CNNs) for learning historical sensor
data [18], have further extended the capabilities of NAC
systems.

A critical aspect of NAC is the NN weight adaptation law,
which governs how NN weights are updated. Most studies
derived these laws using Lyapunov-based methods, ensuring
the boundedness of the tracking error and weight estimation
error, thus maintaining system stability under uncertainty.

However, two significant challenges persist in using NNs
for adaptive control. First, the boundedness of NN weights
is not inherently guaranteed, which can result in unbounded
outputs. When NN outputs are used directly in the control
law, this may lead to excessive control inputs, violating input
constraints. Such constraints are commonly encountered in
industrial systems, where actuators are limited by physical
and safety requirements in terms of amplitude, rate, or energy
[19]. Failing to address these constraints can degrade control
performance or even destabilize the system.

Therefore, addressing these two key issues—ensuring
weight boundedness and satisfying input constraints—is es-
sential for the reliable design of NAC. The following section
provides a detailed review of existing solutions to these
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challenges.

B. Literature Review

1) Ensuring Weight Norm Boundedness: A common chal-
lenge in NAC is maintaining the boundedness of the NN
weights to ensure stability. In many studies, projection op-
erators were employed to enforce upper bounds on the weight
norms, ensuring that the weights do not grow unboundedly. For
example, in [11], [16], [20], projection operators were used to
constrain the weight norms to remain below predetermined
constants. However, these constants were often selected as
large as possible due to the lack of theoretical guarantees
regarding the global optimality of the weight values. While
this approach ensured that the NN remained stable, it did not
necessarily result in optimal performance.

In addition to projection operators, some studies uti-
lized modification techniques like σ-modification [10] and ϵ-
modification [13], [14]. These methods ensured that the NN
weights remained within an invariant set by incorporating
stabilizing functions into the adaptation law. Although these
techniques were effective in ensuring boundedness and avoid-
ing weight divergence, they similarly lacked a formal analysis
of the optimality of the adapted weights by biasing the weights
toward the origin [21]. This leaves room for improvement in
terms of performance optimization.

2) Satisfying Input Constraints: The second major issue
is satisfying input constraints, particularly in systems where
actuators are subject to physical limitations. This issue be-
comes more pronounced in NAC architectures where NNs are
used to augment conventional model-based controllers—such
as feedback linearization or backstepping—rather than acting
as the sole control input. In such cases, if the system model is
inaccurate or the dynamics targeted by the NN are already
contributing to stability, the combined control effort may
result in overly aggressive inputs, increasing the risk of input
saturation [22].

To address the aforementioned issue, several approaches
have been proposed in [12]–[14], [23]–[26] to handle input
constraints in NAC systems. Particularly, the auxiliary systems
have been widely introduced. In [23]–[25], the auxiliary states
were generated whenever input saturation was detected, and
these states were used as feedback terms in the control law
to directly compensate for the effects of input saturation con-
straints. On the other hands, in [12], [13], [26], the auxiliary
systems were incorporated into the adaptation law by adding
the auxiliary states to the feedback error for learning. This
approach helped the NN reduce input saturation by indirectly
regulating the auxiliary states, during the adaptation process.

However, these approaches typically handle input bound
constraints on a per-input basis, i.e., applying bounds to
each scalar control variable individually, and may not account
for more complex, nonlinear constraints, like input norm
constraints, which are commonly found in physical systems
such as robotic actuators or motor systems.

Furthermore, from a learning perspective, augmenting con-
ventional control methods with NNs by simply adding NN

outputs to existing control inputs can interfere with the adapta-
tion process. This occurs because the adaptation law typically
depends on the feedback error, which becomes insensitive to
the NN output when the conventional controller dominates the
system behavior. As a result, the NN ends up counteracting
the conventional control effort rather than directly learning
the system dynamics, thereby weakening its ability to adapt.
To address this, input constraints should be handled within a
unified adaptive framework—such as those proposed in [12],
[13], [26]—where both adaptation and constraint satisfaction
are treated jointly without relying on conventional control
inputs.

3) Potential of Constrained Optimization: A promising
approach to overcoming the limitations of the existing methods
lies in constrained optimization. By formulating the NAC
problem as an unified optimization problem with constraints,
it is possible to adapt the NN weights while minimizing an
objective function, e.g., tracking error, subject to both weight
and input constraints, simultaneously. Constrained optimiza-
tion provides a theoretical framework for defining optimality
and presents numerical methods for finding solutions that
satisfy the constraints [27].

In existing literature, constrained optimization techniques,
such as the Augmented Lagrangian Method (ALM) [28] and
the Alternating Direction Method of Multipliers (ADMM)
[29], [30], have been used to train NNs offline. However,
to the best of the authors’ knowledge, no prior work has
applied constrained optimization to NAC systems with real-
time weight adaptation. This gap suggests that constrained
optimization could be key to addressing both weight bounded-
ness and input constraints in a unified, theoretically grounded
framework, particularly in real-time NAC.

C. Contributions

The main contributions of this study are listed as follows:
• A constrained optimization-based neuro-adaptive control

(CONAC) is proposed, where the control problem is
formulated as a constrained optimization problem. In
this formulation, weight and convex input constraints are
incorporated as inequality constraints, while minimizing
a given objective function.

• Since the proposed CONAC approximates the entire
ideal control law without any conventional controller,
prior knowledge of the system dynamics or the system
identification process for nominal conventional controller
design can be avoided, which is often difficult and time-
consuming to implement in practice.

• The adaptation laws for DNN weights and Lagrange
multipliers are systematically derived to solve the de-
fined problem, using constrained optimization theory.
These laws guarantee convergence to the first-order
optimality conditions at steady state, specifically the
Karush–Kuhn–Tucker (KKT) conditions, as described in
[27, Chap. 12, Thm. 12.1].

• The proposed CONAC’s stability is rigorously analyzed
using Lyapunov theory, ensuring that the tracking error
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and DNN weights remain bounded. This analysis guaran-
tees that the proposed CONAC can achieve stable online
adaptation.

• The proposed CONAC is implemented in real-time on a
2-DOF robotic manipulator, demonstrating its effective-
ness in achieving accurate trajectory tracking while sat-
isfying all imposed constraints. The experimental results
validate the theoretical findings and confirm the practical
applicability of the proposed CONAC.

This study extends our preliminary work in [21], where
an inequality constraint on the weight norm was introduced
within a constrained optimization framework to ensure bound-
edness of the NN weights. In addition to the weight constraints
considered in [21], the present work also incorporates input
constraints into the same framework to address the convex
input saturation problem. Moreover, while the previous study
was limited to numerical simulations, the proposed CONAC
is experimentally validated through real-time implementation
on a 2-DOF robotic manipulator.

D. Organization

The remainder of this paper is organized as follows. Section
II presents the target system and control objective. Section
III introduces the proposed CONAC and the architecture of
DNN used in the controller. In Section IV, the adaptation
law is developed. Section V analyzes a stability of CONAC.
Section VI presents a real-time implementation of CONAC on
a 2-DOF robotic manipulator. Finally, Section VII concludes
the paper and discusses potential future work. Candidates for
convex input constraints are provided in Appendix A.

II. PROBLEM FORMULATION

A. Model Dynamics and Control Objective

We consider an unknown Euler-Lagrange system modeled
as

M d2

dt2 q + V m
d
dtq + F +G+ τ d = sat(τ ), (1)

where q ∈ Rn denotes the generalized coordinate, τ d rep-
resents the disturbance and τ ∈ Rn denotes the gener-
alized control input. The terms M := M(q) ∈ Rn×n,
V m := V m(q, d

dtq) ∈ Rn×n, F := F ( d
dtq) ∈ Rn, and

G := G(q) ∈ Rn represent the unknown inertia matrix,
Coriolis/centripetal matrix, friction vector, and gravity vector,
respectively. The function sat(·) : Rn → Rn represents
the inherent physical limitations of the actuators such that
∥sat(τ )∥ ≤ τ , where τ ∈ R>0 denotes the maximum norm
of control input.

In this study, the saturation function sat(·) is assumed to be
convex, which is practically common in many engineering sys-
tems. This is because actuator limits are typically convex—for
example, minimum and maximum torque constraints—which
define box- or ball-shaped bounds in the input space. To
account for these limitations, it is essential to incorporate
physically motivated constraints into the controller design.
Appendix A introduces candidate constraints that can be
applied to ensure compliance with these physical limitations.

Weight
Optimizer

Deep 
Neural

Network
System
ModelError Filtering

Constrained Optimization-Based Neuro-Adaptive Controller

Fig. 1: Architecture of the proposed constrained optimization-
based neuro-adaptive controller (CONAC).

The Euler-Lagrange system (1) satisfies several important
physical properties, as presented in [4, Chap. 3, Tab. 3.2.1].
The key properties are introduced below:

Property 1. The inertia matrix M is symmetric, positive
definite, and bounded.

Property 2. The Coriolis/centripetal matrix V m can always
be selected, so that the matrix d

dtM−2V m is skew-symmetric,
i.e., x⊤( d

dtM − 2V m)x = 0, ∀x ∈ Rn.

Property 3. The disturbance τ d is bounded, i.e., ∥τ d∥ ≤ τd,
where τd ∈ R≥0.

The control objective is to develop a NAC that enables
q to track a continuously differentiable desired trajectory
qd := qd(t) : R≥0 → Rn, compensating for the unknown sys-
tem dynamics while addressing the imposed constraints. The
desired trajectory qd(t) is supposed to satisfy the following
assumption:

Assumption 1. The desired trajectory qd(t) is assumed to
be bounded, i.e., ∥qd(t)∥ ≤ qd ∈ R>0, and available for
designing a bounded control input.

III. CONTROL LAW DEVELOPMENT

The architecture of the proposed CONAC consists of a DNN
that functions as a NAC, and a weight optimizer for the DNN,
as illustrated in Fig. 1. Before proceeding to the controller de-
sign, some mathematical preliminaries are revisited in Section
III-A. Section III-B introduces the NAC, followed by the DNN
model in Section III-C. The constrained optimization-based
weight adaptation law is presented in Section IV.

A. Mathematical Preliminaries

The following proposition and lemma will be used in
subsequent sections:

Proposition 1 (see [1, Chap. 7, Prop. 7.1.9]). For a matrix
A ∈ Rn×m and a vector b ∈ Rn, the following property
holds:

A⊤b = vec(A⊤b) = vec(b⊤A) = (Im ⊗ b⊤) vec(A). (2)

Lemma 1. For a Lyapunov function V := V (x) ≥ 0 with x ∈
Rn, if the time derivative of V is given by d

dtV ≤ −a1x
⊤x+

a2x for some positive constants a1 ∈ R>0 and a2 ∈ R>0,
then x is bounded as x ∈ {x | ∥x∥ ≤ a2

a1
}.
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Proof. The time derivative of V can be rewritten as

d
dtV ≤ −a1∥x∥

2 + a2∥x∥ = −a1
(
∥x∥ − a2

2a1

)2

+
a2
2

4a1
. (3)

According to (3), it can be concluded that d
dtV is negative

definite if ∥x∥ > a2

a1
holds. In other words, x remains within

the bounded set {x | ∥x∥ ≤ a2

a1
}, since d

dtV is negative
definite when x is outside the set.

B. Neuro-Adaptive Controller Design

Given that the Euler-Lagrange system (1) exhibits second-
order dynamics, a filtered error r ∈ Rn is introduced to convert
the system into a first-order system, as follows:

r := d
dte+Λe, (4)

where e := q − qd denotes the tracking error, d
dte := d

dtq −
d
dtqd represents the time derivative of the tracking error, and
Λ ∈ Rn×n

>0 is a user-designed filtering matrix. Since (4) is
stable system, it implies that e is bounded if r is bounded.

Using r, the system dynamics (1) can be rewritten as

M d
dtr = −V mr −Kr + f − τ d + sat(τ ), (5)

where K = K⊤ ∈ Rn×n
>0 denotes an arbitrary unknown

matrix and f := f
(
q, d

dtq, qd,
d
dtqd,

d2

dt2 qd

)
= Kr +

M
(
− d2

dt2 qd +Λ d
dte

)
+V m

(
− d

dtqd +Λe
)
−F −G ∈ Rn

denotes the lumped unknown system.
Consider the Lyapunov function V1 := 1

2r
⊤Mr. Invoking

Property 2, the time derivative of V1 is
d
dtV1 =r⊤M d

dtr + 1
2r

⊤ d
dtMr

=r⊤ (−V mr −Kr + f − τ d + sat(τ ))

+ 1
2r

⊤ d
dtMr

=− r⊤Kr + r⊤ (f − τ d + sat(τ ))

+ 1
2r

⊤( d
dtM − 2V m)r

≤− λmin(K)∥r∥2 + τd∥r∥+ r⊤(f + sat(τ )).

(6)

Therefore, invoking Lemma 1, it can be concluded that
the filtered error r is uniformly ultimately bounded with
limt→∞∥r∥ ≤ τd

λmin(K) , provided that the lumped unknown
system f can be perfectly cancelled by the control input
τ , neglecting the effect of input saturation. Hence, the ideal
control input τ ∗ can be designed as −f . However, τ ∗ is not
available in practice, since the system dynamics encapsulated
in f are unknown.

To overcome this issue, a DNN is employed to approximate
τ ∗. Let Φ := Φ(qn;θ) : Rl0+1 × RΞ → Rn represent the
DNN, where qn ∈ Rl0+1 is the DNN input vector, and θ ∈ RΞ

is the vector of trainable weights. The architecture of DNN
Φ(qn;θ) will be presented in Section III-C, later. According to
the universal approximation theorem for DNNs [31], Φ(qn;θ)
can approximate a nonlinear function, denoted as g(·), with
an ideal weight vector θ∗ ∈ RΞ over a compact subset Ωn ∈
Rl0+1 to within ϵ-accuracy, such that supqn∈Ωn

∥Φ(qn;θ
∗)−

g(·)∥ = ϵ < ∞. In this study, the ideal weight vector θ∗ is
assumed to be bounded by Assumption 1 and [6, Assum. 1],

Output LayerHidden Layer 1 Hidden Layer 2Input Layer

Fig. 2: Architecture of the DNN Φ(qn;θ) with k = 2, l0 =
2, l1 = l2 = 3, and l3 = 2.

and considered a locally optimal solution, rather than a global
one.

Accordingly, the ideal control input τ ∗ can be approximated
by the DNN with the ideal weight vector Φ∗ := Φ(qn;θ

∗) as
follows:

τ ∗ =Φ∗ + ϵ, (7)

where ϵ ∈ Rn is the approximation error vector, bounded by
∥ϵ∥ ≤ ϵ for some ϵ ∈ R>0. The ideal control input τ ∗ is
estimated online by

τ =Φ̂, (8)

where Φ̂ := Φ(qn; θ̂), and θ̂ ∈ RΞ is the estimated weight
vector for the ideal weight vector θ∗.

Substituting (7) and (8) into (6), the time derivative of V1

can be rewritten as

d
dtV1 ≤ −λmin(K)∥r∥2+τd∥r∥+r⊤

(
−Φ∗ − ϵ+ sat(Φ̂)

)
.

(9)
Therefore, it is concluded that the filtered error r can be
stabilized by adapting θ̂ to θ∗, i.e., Φ̂ → Φ∗, neglecting the
effect of input saturation. Note that the control input saturation
has not yet been considered in the derivation of the ideal
control input; this will be addressed in the subsequent section.

C. Deep Neural Network (DNN) Model

The DNN architecture Φ(qn;θ) = Φk can be recursively
represented, as follows:

Φi :=

{
W⊤

i ϕi(Φi−1), i ∈ {1, . . . , k},
W⊤

0 qn, i = 0,
(10)

where W i = [wij ]i∈{1,··· ,li+1},j∈{1,··· ,li+1} ∈ R(li+1)×li+1

and ϕi : Rli → Rli+1 represent the weight matrix and the
activation function of the ith layer, respectively. The DNN
Φ(qn;θ) has k+1 layers, where the input layer is indexed by
i = 0, and the output layer is indexed by i = k. For instance,
in Fig. 2, the DNN Φ(qn;θ) with k = 2, l0 = 2, l1 = l2 = 3,
and l3 = 2 is illustrated. Notice that the output size of Φ(·)
is the same as that of the control input τ , i.e., lk+1 = n. The
weights W i, ∀i ∈ {0, · · · , k}, are initialized randomly using
uniform distribution at the beginning of the control process.

The activation function is defined as ϕi(x) :=
(σ(x1), σ(x2), · · · , σ(xli), 1)

⊤
, ∀x ∈ Rli , where σ : R→ R
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is a nonlinear function, and the augmentation of 1 is used
to account for bias terms in the weight matrices. In this
study, the hyperbolic tangent function tanh(·) was selected
as the nonlinear function, i.e., σ(x) = tanh(x), ∀x ∈ R,
which provides desirable boundedness with ∥σ(x)∥ < 1 and
0 < ∥dσ(x)dx ∥ ≤ 1.

For simplicity, each layer’s weights are vectorized as θi :=
vec(W i) ∈ RΞi , ∀i ∈ {0, · · · , k}, where Ξi := (li+1)li+1 is
the number of weights in the ith layer. The total weight vector
θ ∈ RΞ is defined by augmenting θi, ∀i ∈ {0, · · · , k}, as

θ :=


θk

θk−1

...
θ0

 =


vec(W k)

vec(W k−1)
...

vec(W 0)

 , (11)

where Ξ :=
∑k

i=0 Ξi represents the total number of weights
in the DNN.

The gradient of Φ(qn;θ) with respect to θ can be obtained
using Proposition 1 and the chain rule as follows:

∂Φ
∂θ =

[
∂Φ
∂θk

∂Φ
∂θk−1

· · · ∂Φ
∂θ0

]
∈ Rn×Ξ, (12)

where

∂Φ
∂θi

=


(I lk+1

⊗ ϕ⊤
k ), i = k,

W⊤
k ϕ

′
k(I lk ⊗ ϕ⊤

k−1), i = k − 1,
...

...
W⊤

k ϕ
′
k · · ·W

⊤
1 ϕ

′
1(I l1 ⊗ q⊤

n ), i = 0,

(13)

and ϕi := ϕi(Φi−1) and ϕ′
i :=

dϕi

dΦi−1
.

In the following sections, let Φ∗
i represent the output of

the ith layer with the ideal weight vector θ∗. Define ϕ∗
i =

ϕi(Φ
∗
i−1) and ϕ∗′

i =
dϕ∗

i

dΦ∗
i−1

. Similarly, let Φ̂i denotes the

output of the ith layer with the estimated weight vector θ̂,
and define ϕ̂i = ϕi(Φ̂i−1) and ϕ̂

′
i =

dϕ̂i

dΦ̂i−1
.

IV. WEIGHT ADAPTATION LAWS

A. Weight Optimizer Design

The control objective can be represented as follows:

minθ̂ J(r; θ̂) := 1
2r

⊤r,

subject to cj(θ̂) ≤ 0, ∀j ∈ I,
(14)

where J(r; θ̂) is the objective function. Inequality constraints
cj := cj(θ̂), ∀j ∈ I, are imposed during the weight adaptation
process, where I denotes the set of the imposed inequality
constraints. The Lagrangian function L(·) is defined as

L(r, θ̂, [λj ]j∈I) = J(r; θ̂) +
∑

j∈I λjcj(θ̂), (15)

where λj , ∀j ∈ I, denotes the Lagrange multiplier for each
constraint.

The adaptation laws for θ̂ and [λj ]j∈I are
derived to solve the dual problem of (14), i.e.,
minθ̂ max[λj ]j∈I L(r, θ̂, [λj ]j∈I), as follows:

d
dt θ̂ = −α∂L

∂θ̂
= −α

(
∂J

∂θ̂
+

∑
j∈I λj

∂cj

∂θ̂

)
, (16a)

d
dtλj = βj

∂L
∂λj

= βjcj , ∀j ∈ I, (16b)

λj ← max(λj , 0), (16c)

where α ∈ R>0 denotes the adaptation gain (learning rate) and
βj ∈ R>0 denotes the update rate of the Lagrange multipliers
in I, and the arguments of L(·) and J(·) are suppressed for
brevity. The Lagrange multipliers associated with inequality
constraints are non-negative, i.e., λj ≥ 0, due to (16c). When
a constraint cj becomes active, i.e., cj > 0, the corresponding
Lagrange multiplier λj increases, see (16b), to address the
violation, see (16a). Once the violation is resolved and the
constraint is no longer active, i.e., cj ≤ 0, the Lagrange
multiplier λj decreases gradually until it returns to zero, see
(16c).

At steady state, where d
dt θ̂ = 0 and d

dtλj = 0, the KKT
conditions are satisfied, i.e., ∂L

∂θ̂
= 0, cj ≤ 0, λj ≥ 0, and

λjcj = 0. In other words, the proposed weight optimizer
updates θ̂ and λj in a way that satisfies the KKT conditions.
These conditions represent the first-order necessary conditions
for optimality, guiding the updates toward candidates for a
locally optimal point.

B. Approximation of the Gradient of Objective Function

The adaptation law for θ̂ defined in (16a) involves the partial
derivative of the filtered error with respect to control input
∂r
∂τ , i.e., ∂J

∂θ̂
=

(
( ∂r∂τ )(

∂τ

∂θ̂
)
)⊤

r =
(
( ∂r∂τ )(

∂Φ̂

∂θ̂
)
)⊤

r. Since
the objective function depends on r of a dynamic system,
obtaining ∂r

∂τ is not straightforward. The recommended method
to calculate the exact value of ∂r

∂τ is to use the forward
sensitivity method [21], [32] by simulating the sensitivity
equation as follows:

d
dt

(
∂r
∂τ

)
= ∂

∂τ

(
M−1(−V mr −Kr + f − τ d + sat(τ ))

)
.

(17)
However, this method cannot be realized, since we do not
have the exact system dynamics, i.e., M ,V m,F and G.
Additionally, the computational cost of the forward sensitivity
method is high, as the number of DNN’s weights is generally
large.

In [33], [34], the authors approximate ∂r
∂τ by taking the sign

of each entry, i.e., ∂r
∂τ ≈

[
sign( ∂ri∂τj

)
]
i,j∈{1,··· ,m}

, assuming

known control directions. However, this approach is not ap-
plicable to (5), where control directions are unknown. Instead,
since the sign of the control input matrix is known—owing
to the positive definiteness of M−1, see Property 1—we
approximate ∂r

∂τ ≈ In. Consequently, the adaptation law in
(16a) becomes:

d
dt θ̂ ≈ −α

(
∂Φ̂

∂θ̂

⊤
r +

∑
j∈I λj

∂cj

∂θ̂

)
. (18)
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C. Essential and Potential Constraint Candidates

This section introduces essential constraints required to
ensure the stability of the proposed CONAC, as well as
conditions for potential input constraints.

First, weight norm constraints cθi(θ̂), ∀i ∈ {0, · · · , k},
defined in (19), are essential to prevent the weights from
diverging during the adaptation process:

cθi =
1
2

(
∥θ̂i∥2 − θ

2

i

)
, (19)

with θi ∈ R>0 denoting the maximum allowable norm
for θ̂i, and the arguments of cθi(·) are omitted for brevity.
The gradient of cθi with respect to θ̂ can be obtained by
accumulating the gradients of each layer as follows:

∂cθi
∂θ̂j

=

{
θ̂i, if i = j,

0, if i ̸= j.
(20)

Next, we present the following assumptions, which specify
the conditions for the potential input constraints introduced in
Appendix A:

Assumption 2. The constraint function cj(θ̂) is convex in the
(input-) τ -space and satisfies cj(0) ≤ 0 and cj(θ

∗) ≤ 0.

Assumption 3. The selected constraints satisfy the Linear
Independence Constraint Qualification (LICQ) [27, Chap. 12,
Def. 12.1].

Remark 1. Assumption 2 is not restrictive, since, as afore-
mentioned, the control input saturation is practically convex.
Moreover, Assumption 3 is a standard assumption in opti-
mization problems, ensuring that the gradients of the active
constraints are linearly independent. This assumption will be
used in the stability analysis (see Lemma 2).

V. STABILITY ANALYSIS

Before conducting the stability analysis, let us define the
weight estimation error as θ̃ := [θ̃i]i∈{0,··· ,k}, where θ̃i :=

θ̂i−θ∗
i , ∀i ∈ {0, · · · , k}. The following lemmas are introduced

for the stability analysis.

Lemma 2. If Assumptions 2 and 3 hold, then for each active
constraint cj , the angle between the output layer’s weight

vector θ̂k and ∂cj

∂θ̂k
is positive; that is ∂cj

∂θ̂k

⊤
θ̂k > 0.

Proof. Since τ = Φ̂, a linear mapping T (·) : θ̂k → τ , which
is independent of θ̂k, can be derived using Proposition 1:

τ =Φ̂ = vec(Ŵ
⊤
k ϕ̂k) = (I lk+1

⊗ ϕ̂
⊤
k )

⊤ vec(Ŵ k)

= (I lk+1
⊗ ϕ̂

⊤
k )

⊤︸ ︷︷ ︸
=:T (ϕ̂k)

θ̂k = T (ϕ̂k)θ̂k. (21)

Therefore, the convexity of the input constraints in the τ -
space (see Assumption 2) is preserved in θ̂k-space, implying
that ∂cj

∂θ̂k

⊤
θ̂k > 0.

Lemma 3. If input constraint cj(θ̂), ∀j ∈ I \ {θi}i∈{0,··· ,k},
satisfies Assumption 2, then ∥ ∂cj

∂θ̂i
∥, ∀i ∈ {k − 1, · · · , 0}, is

bounded, provided the norms of θ̂i, ∀i ∈ {k, · · · , i + 1},
remain bounded.

For instance, if k = 3 and i = 1, ∥ ∂cj
∂θ̂1
∥ is bounded,

provided that ∥θ̂3∥ and ∥θ̂2∥ are bounded.

Proof. The gradient of cj , ∀j ∈ I \ {θi}i∈{0,··· ,k}, with
respect to θ̂i is represented as

∂cj

∂θ̂i
=

∂cj
∂τ

∂τ

∂Φ̂

∂Φ̂

∂θ̂i
=

∂cj
∂τ In

∂Φ̂

∂θ̂i
. (22)

The boundedness of the first term ∂cj
∂τ is guaranteed, if the in-

put argument τ is bounded owing to the convexity of cj by As-
sumption 2. In addition, the boundedness of τ can be ensured
by the boundedness of θ̂k, since τ = Φ̂ = (I lk+1

⊗ ϕ̂
⊤
k )θ̂k

and ∥ϕ̂k∥ is bounded due to the properties of the activation
functions. The third term, ∂Φ̂

∂θ̂i
is bounded, provided that the

norms of θ̂i, ∀i ∈ {k, · · · , i + 1}, are bounded. This can be
verified by using the definition of ∂Φ̂

∂θ̂i
given in (13). Conse-

quently, the boundedness of ∥ ∂cj
∂θ̂i
∥, ∀j ∈ I \ {θi}i∈{0,··· ,k},

depends on the boundedness of θ̂i, ∀i ∈ {k, · · · , i+ 1}.

The following theorem states that r and θ̂ are bounded.

Theorem 1. For the dynamical system described in (1), the
NAC in (8) with the weight adaptation laws in (16) ensure the
boundedness of the filtered error r and the weight estimate
θ̂, under the input constraints satisfying Assumption 2 and 3,
provided that the weight norm constraints (19) are imposed.

Proof. Invoking the fact that the amplitude of the control input
depends only on θ̂k, i.e., τ = Φ̂ = (I lk+1

⊗ ϕ̂
⊤
k )θ̂k and

∥ϕ̂k∥ is bounded, the boundedness of inner layers’ weights
will be established after proving the boundedness of r and
θ̂k. In addition, without loss of generality, weight norm
constraints cθi , ∀i ∈ {0, · · · , k}, are supposed to be active.
This assumption is justified because, even if cθi is inactive, θ̂
is adapted to minimize the objective function J as long as the
constraint is inactive. We consider two cases: (1) the control
input is saturated, and (2) the control input is not saturated.

Case 1: Control input is saturated.

As a result of the time derivative of V1 in (9), the invariant
set Θ1

r of r, i.e., if r leaves Θ1
r, d

dtV1 is negative, can be
obtained using Lemma 1 as follows:

Θ1
r =

{
r ∈ Rn | ∥r∥ ≤ τd+τ+θ

∗
k

√
lk+1+ϵ

λmin(K)

}
. (23)

It is notable that the ideal DNN Φ∗
k = W ∗

k
⊤
ϕ∗

k is bounded by
θ
∗
k

√
lk + 1. This is because, the ideal weight θ∗

k is bounded by
Assumption 1 such that ∥θ∗

k∥ ≤ θ
∗
k for some positive constant

θ
∗
k. Hence, invoking ∥W ∗

k∥F = ∥θ∗
k∥ ≤ θ

∗
k and ∥ϕ∗

k∥ ≤√
lk + 1, we have ∥Φ∗∥ ≤ θ

∗
k

√
lk + 1.



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 7

To investigate the boundedness of θ̂k, consider the Lya-
punov function candidate V2 := 1

2α θ̂
⊤
k θ̂k. Taking the time

derivative of V2 yields:

d
dtV2 =− θ̂

⊤
k

(
(I lk+1

⊗ ϕ̂
⊤
k )

⊤r +
∑

j∈I λj
∂cj

∂θ̂k

)
=− θ̂

⊤
k

(
(I lk+1

⊗ ϕ̂
⊤
k )

⊤r + λθk θ̂k

+
∑

j∈I\{θi}i∈{0,··· ,k}
λj

∂cj

∂θ̂k

)
≤− λθk∥θ̂k∥2 + ∥(I lk+1

⊗ ϕ̂
⊤
k )∥︸ ︷︷ ︸

=:γ1∈R≥0

∥r∥∥θ̂k∥

−
∑

j∈I\{θi}i∈{0,··· ,k}
λj θ̂

⊤
k

∂cj

∂θ̂k︸ ︷︷ ︸
=:γ2∈R≥0, by Lemma 2 and Assumption 3

≤− λθk∥θ̂k∥2 + γ1∥r∥∥θ̂k∥.

(24)

According to (24) and Lemma 1, the invariant set of θ̂k is
defined as

Θ1
θk

=
{
θ̂k ∈ RΞk | ∥θ̂k∥ ≤ γ1(τd+τ+θ

∗
k

√
lk+1+ϵ)

λθk
λmin(K)

}
. (25)

The satisfaction of the constraints, i.e., cj , ∀j ∈ I \
{θi}i∈{0,··· ,k−1}, can be verified through the boundedness of
θ̂k. For the output layer’s weight norm constraint cθk , if the
corresponding Lagrange multiplier λθk increases sufficiently
large due to the constraint violation, θ̂k approaches toward
the origin as the invariant set Θ1

θk
shrinks to a point. The

remaining input constraints can be validated implicitly through
the term γ2 in (24). Similarly to cθk , when a input constraint
cj , ∀j ∈ I \ {θi}i∈{0,··· ,k}, is violated, the corresponding
Lagrange multiplier λj increases sufficiently large, leading to
an increase in γ2. It makes γ2 dominates the right-hand side
of (24), which leads d

dtV2 negative definite. This drives θ̂k

toward the origin until the constraint is satisfied.
Therefore, the boundedness of r and θ̂k is guaranteed by

the invariant sets Θ1
r and Θ1

θk
, and the satisfactions of cj , ∀j ∈

I \ {θi}i∈{0,··· ,k−1}, is ensured.

Case 2: Control input is not saturated.
Since the input constraints are inactive, the saturation func-

tion sat(·) in (9) and the input constraint functions cj , ∀j ∈
I \ {θi}i∈{0,··· ,k}, in (24) can be neglected. Consider the
Lyapunov function candidate V3 := V1 + V2, whose time
derivative is given by:

d
dtV3 =− λmin(K)∥r∥2 + τd∥r∥+ r⊤(Φ̂−Φ∗ − ϵ)

− θ̂
⊤
k

(
(I lk+1

⊗ ϕ̂
⊤
k )

⊤r + λθk θ̂k

)
≤− λmin(K)∥r∥2 + r⊤Φ̂+ (τd + ∥Φ∗ + ϵ∥) ∥r∥

− Φ̂
⊤
r − λθk∥θ̂k∥2

≤− λmin(K)∥r∥2 +
(
τd + θ

∗
k

√
lk + 1 + ϵ

)
∥r∥

− λθk∥θ̂k∥2.
(26)

Based on the same reasoning as in Case 1, the boundedness
of r is ensured by the invariant set:

Θ2
r =

{
r ∈ Rn | ∥r∥ ≤ τd+θ

∗
k

√
lk+1+ϵ

λmin(K)

}
. (27)

Fig. 3: Experimental setup of the two-link robotic manipulator
used for real-time validation.

The boundedness of θ̂k also can be ensured by the invariant
set Θ2

θk
= {θ̂k ∈ RΞk | ∥θ̂k∥ ≤ θk}, as λθk remains positive

unless the weight norm constraint cθk is satisfied.

The boundedness of the inner layer weights and the
satisfaction of their corresponding constraints cj , ∀j ∈
{θi}i∈{k−1,··· ,0}, can be established recursively using [35,
Chap. 4, Thm. 1.9]. The dynamics of θ̂i, ∀i ∈ {k−1, · · · , 0},
are represented as

d
dt θ̂i = −α

(
∂Φ̂

∂θ̂i

⊤
r + λθi θ̂i +

∑
j∈I\{θi}i∈{0,··· ,k}

λj
∂cj

∂θ̂i

)
.

(28)
By Lemma 3, θ̂i is bounded, provided that θ̂i, ∀i ∈
{k, · · · , i + 1}, are bounded. This holds because the system
matrix −λθiIΞi is stable, and the residual terms—such as
∂Φ̂

∂θ̂i
, r, and ∂cj

∂θ̂i
—are bounded. Moreover, the Lagrange

multiplier λj does not diverge since the input constraints
cj , ∀j ∈ I \ {θi}i∈{0,··· ,k} are satisfied before divergence
can occur. Therefore, starting from the (k − 1)th layer, the
boundedness of θ̂i can be established recursively down to
the input layer (i = 0). Moreover the satisfaction of the
weight norm constraints for the inner layers can be verified,
as the Lagrange multipliers λθi , ∀i ∈ {k−1, · · · , 0}, increase
sufficiently large to stabilize the θ̂i dynamics in (28), leading
to its convergence toward the origin.

In conclusion, the filtered tracking error r and the weight
estimate θ̂ are bounded, and all imposed constraints cj , ∀j ∈
I, are satisfied.

VI. REAL-TIME IMPLEMENTATION AND VALIDATION

A. Validation Setup

To validate the effectiveness of the proposed CONAC, a
real-time experiment was conducted on a two-link robotic
manipulator, as shown in Fig. 3. The OpenCR1.0 board [36]
with a 32-bit ARM Cortex and a 216 MHz clock frequency
was used for the real-time implementation. The two-link
robotic manipulator actuated by two Cubemars AK10-90 servo
motors. The servos were controlled using the OpenCR1.0
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(a) Two-link robotic manipulator. (b) Control input saturation function.

Fig. 4: Two-link robotic manipulator and control saturation
function.

TABLE I: Two-link robotic manipulator’s parameters.

Symbol Description Value

m1,m2 Mass 2.465 kg

l1, l2 Length 0.2 m

lc1, lc2 Center of mass 0.139 m

I1, I2 Inertia 0.069 kg ·m2

board which transmits the torque reference to the correspond-
ing servo via controller area network (CAN) communication.
The system dynamics of the two-link robotic manipulator can
follow the Euler-Lagrange equation (1), where q denotes joint
angles and τ denotes the control input (joint torques), and is
illustrated in Fig. 4a. The measured and/or estimated system
parameters are provided in Table I.

The desired trajectory is designed with 4 segments as
follows:

qd(t) =

(
qd1
qd2

)
=


P5(t; q

(0)
d , q

(1)
d , tf ), if 0 ≤ t < tf ,

P5(t; q
(1)
d , q

(2)
d , tf ), if tf ≤ t < 2tf ,

P5(t; q
(2)
d , q

(1)
d , tf ), if 2tf ≤ t < 3tf ,

P5(t; q
(1)
d , q

(0)
d , tf ), if 3tf ≤ t < 4tf ,

(29)
where P5(t;x1,x2, tf ) denotes a quintic (5th-order) poly-
nomial trajectory that moves the system from x1 ∈ R2 to
x2 ∈ R2 in tf seconds, with zero initial and final velocities.
The initial and final joint angles of the segments are defined
as follows: q(0)

d =
(
− 1

3π,
1
3π

)⊤
, q(1)

d =
(
1
4π,−

1
2π

)⊤
, q(2)

d =(
− 1

4π,
1
4π

)⊤
, as illustrated in Fig. 4a. The time duration of the

segments is defined as tf = 3 s. To demonstrate the learning
capability of the DNN, the desired trajectory was applied
twice. The first and second repetitions of the desired trajectory
are referred to as Episode 1 and Episode 2, respectively.

However, due to the random initialization of the DNN
weights, CONAC’s initial performance is expected to be poor,
leading to unstable behavior. Therefore, in order to avoid the
instability caused by the initial poor performance of CONAC,
a warm-up phase was introduced, prior to applying the desired
trajectory. In the warm-up phase, the manipulator was initially
positioned at a stable equilibrium point, denoted as qd

origin =(
− 1

2π, 0
)⊤

. Subsequently, a trajectory P5(t; qd
origin, q

(0)
d , 3)

was used to move the manipulator from qd
origin to q

(0)
d over

a duration of 3 seconds. Once the manipulator reached q
(0)
d ,

TABLE II: Properties of the controllers

Description Input Constraint Handling

(C1)
CONAC with (32) cτ2 and cτ2

large update rate βj . with τ2 = −τ2 = 3.5, and
(βτ2 = βτ2

= 100 and βτ = 10) (34) cτ with τ = 11.

(C2)
CONAC with (32) cτ2 and cτ2

small update rate βj . with τ2 = −τ2 = 3.5, and
(βτ2 = βτ2

= 1 and βτ = 0.1) (34) cτ with τ = 11.

(C3)
CONAC without input constraints. No input constraints

are imposed.(βτ2 = βτ2
= βτ = 0)

(C4)
NAC with auxiliary system. τ1 = −τ1 = 10.428

(conventional method) τ2 = −τ2 = 3.5.

a constant desired trajectory qd = q
(0)
d was maintained for

8 seconds to allow the system to settle and eliminate the
influence of transient dynamics.

In the validation, we assume that the actuators are subject
to a convex saturation function that projects the control input
onto the convex set Θsat := {Θsat,τ2 ∩Θsat,τ}, as illustrated
in Fig. 4b, where

Θsat,τ2 := {τ2 | |τ2| ≤ 3.5} , (30a)
Θsat,τ := {τ | ∥τ∥ ≤ 11} . (30b)

The sets defined in (30a) and (30b) can be physically inter-
preted as the current limit imposed by the torque limit of the
second joint actuator and the power source, respectively. The
corresponding input constraints are mathematically described
in Appendix A as the input bound constraint (32) and the input
norm constraint (34), respectively.

For comparative analysis, four controllers were imple-
mented, with their properties summarized in Table II.

Controller 1 (C1)—CONAC with a large update rate
βj , ∀j ∈ I, for the Lagrange Multipliers: To handle input
saturation, the proposed CONAC was implemented with the
input bound constraints cτ2 and cτ2

(32) for the second link,
and the input norm constraint cτ (34), as follows:

cτ2 = τ2 − τ2, cτ2
= τ2 − τ2, cτ = 1

2 (∥τ∥ − τ)
2
, (31)

where τ2 = −τ2 = 3.5, and τ = 11. Therefore, controller
(C1) utilizes the full capability of the actuator, see (30a) and
(30b). The weight norm constraints cθi(·), ∀i ∈ {0, · · · , k},
defined in (19), were also incorporated into CONAC frame-
work with θ0 = θ1 = θ2 = 6. As described in (8), the control
input (torque) corresponds to the output of the DNN, and the
adaptation law is defined in (16).

The update rates of the Lagrange multipliers for the weight
norm constraints were set to βθi = 1, ∀i ∈ {0, · · · , k}. For the
input constraints, large update rates were used: βτ2 = βτ2 =
100 and βτ = 10, in order to investigate the effect of large
update rates.

Controller 2 (C2)—CONAC with a small update rate
βj , ∀j ∈ I, for the Lagrange Multipliers: The proposed
CONAC was implemented with the same input constraints as
in (C1), but with update rates for the input constraints reduced
by a factor of 100: βτ2 = βτ2

= 1 and βτ = 0.1. All other
properties and parameters were kept identical to those of (C1).
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Controller 3 (C3)—CONAC without input constraints: The
third controller was identical to (C1) and (C2), except that
the input constraints were removed to highlight the constraint
handling capability of the proposed CONAC. In this case, the
update rates of the Lagrange multipliers associated with the in-
put constraints, i.e., βτ2

, βτ2
and βτ , were set to zero, such that

the corresponding Lagrange multipliers [λj ]j∈{τ2,τ2,τ} were
not updated, see (16b). All other properties and parameters
were kept the same as in (C1) and (C2).

Controller 4 (C4)—NAC with auxiliary system (conventional
method): As a baseline for comparison, the auxiliary system-
based approach from [12], [13], [26] was implemented. The
auxiliary system is defined by d

dtζ = Aζζ + Bζ∆τ , with
initial condition ζ|t=0 = 02×1, where ζ ∈ R2 represents the
auxiliary state variables, and Aζ ∈ R2×2

<0 and Bζ ∈ R2×2 are
user-designed matrices. The auxiliary state ζ is driven by the
overflow amount of the control input ∆τ , where each element
is defined as ∆τi = τi −max(τ i,min(τ i, τi)), ∀i ∈ {1, 2}.

This auxiliary state was incorporated into the adaptation law
by replacing the filtered tracking error r with r+ζ. As a result,
the weights were adapted to minimize both the filtered tracking
error and the auxiliary state, thereby mitigating saturation in
each control input.

The auxiliary system matrices were chosen as Aζ =
diag(−10,−10) and Bζ = diag(103, 103), to balance respon-
siveness to input overflow with the convergence speed of the
auxiliary dynamics. Since the auxiliary system only accounts
for element-wise input saturation—corresponding to the input
bound constraint (32)—the upper bound of the first actuator
torque τ1 = −τ1 was set to 10.428 to approximate the input
norm constraint τ = 11, given τ21 + τ22 = τ2.

All other properties and parameters were kept the same as
in (C1), (C2) and (C3) expect that the weight boundedness was
handled using the projection operator used in [11].

For all controllers, i.e., (C1), (C2), (C3), and (C4), the input
vector to the DNN was defined as qn =

(
q⊤, d

dtq
⊤, r⊤, 1

)⊤ ∈
R7, where the scalar 1 was included to account for the
bias term in the weight matrix. All DNNs shared the same
architecture, consisting of two hidden layers with four nodes
each, i.e., k = 2, and l0 = 6, l1 = 4, l2 = 4, and l3 = 2 in (10).
The adaptation gain was set to α = 0.2, and the filtering matrix
in (4) was chosen as Λ = diag(5, 15). To support real-time
implementation, the controller operated at a sampling rate of
250 Hz, with control results collected via CAN communication
using a PCAN-USB interface and recorded on a computer at
the same rate.

The tracking performance was quantitatively evaluated us-
ing the L2-norm of the each joint angle’s tracking error,

defined as
√∫ T

0
∥ei(t)∥ dt, ∀i ∈ {1, 2}, where T ∈ R>0

denotes the duration of each episode.

B. Validation Results

1) Tracking Performance: The real-time implementation
results are presented in Fig. 5, and the quantitative comparison
of tracking performance is summarized in Table III. Across

TABLE III: Quantitative comparison of performances’L2 norm.

Episode 1

(C1) (C2) (C3) (C4)

e1 × 103 / rad 25.130 21.719 23.168 24.195

e2 × 103 / rad 25.016 10.530 13.061 12.927

Episode 2

(C1) (C2) (C3) (C4)

e1 × 103 / rad
7.066 8.021 8.408 19.721

(−71.6%) (−63.1%) (−63.7%) (−18.5%)

e2 × 103 / rad
2.198 2.435 3.554 4.256

(−88.4%) (−76.9%) (−72.8%) (−67.1%)

the two episodes, all controllers improved their tracking per-
formance. Specifically, the L2-norm of e1 was reduced by
71.6% for (C1), 63.1% for (C2), 63.7% for (C3), and 18.5% for
(C4); while the L2-norm of e2 was reduced by 88.4%, 76.9%,
72.8%, and 67.1%, respectively. Qualitatively, as illustrated
in Fig. 5a and Fig. 5b, oscillations were suppressed during
the second episode. These results indicate that the DNNs
in all controllers successfully learned the ideal control input
τ ∗ using the filtered tracking error r, despite τ ∗ being
completely unknown a priori. Furthermore, the stable learning
observed under random weight initialization and without prior
knowledge of the system, demonstrated the effectiveness of
the proposed CONAC in enabling online learning capability.

Notably, in both episodes, all controllers failed to track the
desired trajectory of q1 during certain time intervals: from
17.5 s to 19.9 s in Episode 1, and from 23.5 s to 25.9 s and
from 29.5 s to 31.9 s in Episode 2, as shown in Fig. 5a. This
degradation in tracking performance was attributed to actuator
saturation during those intervals, as observed in Fig. 5d and
Fig. 5e.

The tracking performance of CONAC with input con-
straints—i.e., (C1) and (C2)—outperformed the auxiliary
system-based NAC (C4) in the second episode, as shown
in Table III. This improvement was attributed to the ability
of (C1) and (C2) to fully utilize the actuator’s capacity,
whereas (C4) was limited by the design of the auxiliary
system, which constrained the first joint actuator. While (C3)
also showed better performance than (C4), this was primarily
because it did not consider input saturation and thus used
more of the actuator’s capacity. However, since (C3) did not
handle the control input saturation, it generated excessively
large control efforts to minimize the tracking error, even
though these efforts could not be realized due to actuator
limits, as shown in Fig. 5c–5e. In addition, the severity of
saturation violations in (C3) increased during periods when
the input constraints were active. These large violations pose
a significant risk to the physical system, potentially causing
actuator damage or failure. Furthermore, once the control
saturation was lifted—typically due to changes in the desired
trajectory—this resulted in oscillatory behavior, as CONAC’s
weights had been adapted to generate excessively high control
inputs, see Fig. 5e, where the input constraints were lifted at
25.9 s and 31.9 s.
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Fig. 5: Real-time implementation results of (C1) [ ], (C2) [ ], (C3) [ ], (C4) [ ], and desired trajectory qd [ ].
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Fig. 6: Constraint handling behavior of (C1) [ ], (C2)
[ ], (C3) [ ], and (C4) [ ] during the time interval
from 29.4 s to 31.9 s.

2) Constraint Handling: In this section, the constraint
handling capability of all controllers are investigated. As
shown in Fig. 5c–5e, all controllers except (C3), which did
not consider the control input saturation, satisfied the control
input saturation illustrated in Fig. 4b. In (C1) and (C2), control
input saturation was addressed through corresponding input
constraints within the constrained optimization framework,
whereas (C4) employed an auxiliary system, as summarized
in Table II.

To investigate the constraint handling process, the time
interval from 29.4 s to 31.9 s was selected, during which
the control input saturation was active for all controllers. In

Fig. 7: The effect of the Lagrange multiplier λj on the
adaptation direction of θ̂2 is illustrated. The notations (·)′ and
(·)′′ denote two distinct cases corresponding to large and small
values of the Lagrange multiplier, respectively, i.e., λ′

j > λ′′
j .

Fig. 6, the control input locus, the Lagrange multipliers, and
the auxiliary states are illustrated over this time interval. The
properties of the controllers are illustrated in Fig. 6a, where the
control input loci of (C1) and (C2) fully explore the feasible
input domain shown in Fig. 4b, whereas (C3) exceeds the input
saturation limits, and (C4) is restricted in its first actuator input
limit due to the auxiliary system design.

The input constraint handling between 29.4 s to 31.9 s is
examined in detail. For (C1) and (C2), activation of input con-
straints cj dynamically generated the corresponding Lagrange
multipliers λj , as shown in Fig. 6b. These multipliers guided
the adaptation of the weights θ̂i, ∀i ∈ {0, 1, 2}, to reduce
constraint violations in accordance with (16a).

To further illustrate this effect, Fig. 7 compares the adap-
tation direction of the output layer’s weight θ̂2 under two
different magnitudes of λj . Under Assumptions 2 and 3, the
convexity of cj in the θ̂2-space (see Lemma 2) is illustrated in
Fig. 7. The figure highlights the influence of the update rate βj :
a larger βj (as in (C1)) yields a larger λj , resulting in a more
aggressive adjustment of θ̂2 via the term −λj

∂cj

∂θ̂2
in (16a),

thereby accelerating constraint satisfaction—though at the cost
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of oscillatory learning behavior. In contrast, the smaller update
rate in (C2) leads to more conservative weight updates and
smoother, but slower, convergence. These behaviors are clearly
observed in Fig. 6a and Fig. 6b, where (C1) satisfies the input
constraint cτ more quickly than (C2), which shows repeated
growth and reset of λτ .

For (C4), the auxiliary state ζ1 was generated in response
to the control input saturation of the first link actuator τ1,
as shown in Fig. 6c. Since the weights were adapted to
reduce both the filtered error r and the auxiliary state ζ, the
control input saturation was subsequently reduced, as evident
in Fig. 6a. Once the saturation was resolved at around 31.2 s
(see Fig. 5c), the auxiliary state ζ1 converged to zero due to
the stable state matrix Aζ in the auxiliary system dynamics,
given by d

dtζ = Aζζ + Bζ∆τ with ∆τ = 02×1, as shown
again in Fig. 6c.

Finally, the handling of the weight norm constraints
cθi , ∀i ∈ {0, 1, 2}, is investigated. Among all controllers, the
weight norm constraint was only activated for the output layer
weights θ̂2 in (C3), as shown in Fig. 5f. This is because the
weights in (C1), (C2), and (C4) were implicitly suppressed
by the input constraints, which were not applied in (C3).
Furthermore, the constraints on the inner and hidden layer
weights were never violated; that is, both ∥θ̂0∥ and ∥θ̂1∥
consistently remained below their limits. This was attributed
to the fact that the backpropagated error being scaled by
the elements’ gradients of the activation function, which is
bounded in (0, 1], i.e., σ(·) = tanh(·).

Additional details on the constraint handling process are
provided in Fig. 6b. Similar to the case of the input constraints,
the Lagrange multipliers λθ2 increased at around 30.4 s, as
shown in Fig. 6b, when θ̂2 exceeded the prescribed norm
constraint θ2 (see Fig. 5f), thereby adjusting the adaptation
direction of θ̂2 to mitigate the violation of the constraint cθ2 .

3) Effectiveness of CONAC in Real-time Applications: The
effectiveness of the proposed CONAC in real-time applications
was evaluated by measuring the computational time using CPU
clock ticks on the OpenCR1.0 board. As shown in Fig. 8, the
computational times of all controllers remained below 4 ms,
demonstrating that the proposed CONAC is suitable for real-
time implementation at a sampling rate of 250 Hz.

VII. CONCLUSION

This paper proposed a constrained optimization-based
neuro-adaptive controller (CONAC) for unknown Euler-
Lagrange systems, addressing both weight norm and convex
input constraints within a unified optimization framework. The

stability of CONAC was analyzed using Lyapunov theory,
demonstrating bounded tracking errors and weight estimation
under real-time adaptation.

CONAC effectively incorporated both convex input con-
straints and weight norm constraints, ensuring that actua-
tor limitations and neural network weights remained within
predefined bounds. By embedding these constraints into the
optimization process, CONAC ensured weight convergence in
accordance with the Karush-Kuhn-Tucker (KKT) conditions,
thereby ensuring both stability and optimality.

Real-time implementation validated the superior perfor-
mance of CONAC compared to a conventional method.
CONAC successfully handled complex input constraints while
rigorously managing weight norms, resulting in improved
tracking accuracy and stable behavior without significant os-
cillations.

Future work may extend this approach to include constraints
on both control inputs and system states, further enhancing the
flexibility and robustness of neuro-adaptive control systems
within constrained optimization frameworks.

APPENDIX

A. Input Constraint Candidates

This section introduces potential input constraints that can
be incorporated into the proposed CONAC framework.

1) Input Bound Constraint: Most physical systems are
subject to control input limitations due to inherent electrical
and mechanical constraints. These are expressed as cτ :=
[cτ i

]i∈{1,··· ,n} and cτ := [cτ i
]i∈{1,··· ,n}, where

cτ i = τ(i) − ττ i , cτ i
= ττ i

− τ(i), (32)

with ττ i
∈ R and ττ i

∈ R representing the maximum and
minimum control input bounds, respectively. The gradients of
cτ and cτ with respect to θ̂ are given by

∂cτ

∂θ̂
= = +∂Φ̂

∂θ̂
= +

[
(I lk+1

⊗ ϕ̂
⊤
k ) · · · (·)

]
∈ Rn×Ξ,

∂cτ

∂θ̂
= = −∂Φ̂

∂θ̂
= −

[
(I lk+1

⊗ ϕ̂
⊤
k ) · · · (·)

]
∈ Rn×Ξ.

(33)
2) Input Norm Constraint: Consider the control input τ as

the torque corresponding to its generalized coordinate. Since
torque is typically linearly proportional to current, actuators
that share a common power source are often subject to total
current limitations. This can be captured by the following
inequality constraint:

cτ = 1
2

(
∥τ∥2 − τ2

)
, (34)

with the maximum allowable control input magnitude τ ∈
R>0. This input norm constraint is also commonly applied
in current and torque control problems for electric motorsThe
gradient of cτ with respect to θ̂ are given by

∂cτ

∂θ̂
=
∑n

i=1 τi

(
rowi

(
∂Φ̂

∂θ̂

))⊤
= ∂Φ̂

∂θ̂

⊤
τ ∈ RΞ. (35)

It should be noted that constraints (32) and (34) can be
imposed simultaneously, as their gradients (33) and (35) are
linearly independent, satisfying Assumption 3, i.e., the LICQ
condition.
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