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Abstract

This paper presents a constrained optimization-based neuro-adaptive control (CONAC) for nonlinear synchronous machines

(SMs) under voltage constraints, which allows to control the completely unknown electrical drive system, after a brief learning

phase with very satisfactory control performance. The artificial neural network (ANN) in the proposed neuro-adaptive con-

troller (NAC) learns online and empowers the controller to handle parameter uncertainties. Moreover, it solves a constrained

optimization problem which allows to consider the nonlinear voltage constraints as well, by deriving the adaptation laws of the

ANN’s weights from the Lagrangian function. Boundedness of tracking error, convergence of the ANN weights, and satisfac-

tion of the constraints are guaranteed by Lyapunov theory. Numerical simulations in combination with a realistic (nonlinear)

synchronous machine drive demonstrate the effectiveness and robustness against parameter and modeling uncertainties of the

proposed NAC and its very acceptable constraints handling.
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Abstract—This paper presents a constrained optimization-
based neuro-adaptive control (CONAC) for nonlinear syn-
chronous machines (SMs) under voltage constraints, which allows
to control the completely unknown electrical drive system, after
a brief learning phase with very satisfactory control perfor-
mance. The artificial neural network (ANN) in the proposed
neuro-adaptive controller (NAC) learns online and empowers
the controller to handle parameter uncertainties. Moreover,
it solves a constrained optimization problem which allows to
consider the nonlinear voltage constraints as well, by deriving
the adaptation laws of the ANN’s weights from the Lagrangian
function. Boundedness of tracking error, convergence of the ANN
weights, and satisfaction of the constraints are guaranteed by
Lyapunov theory. Numerical simulations in combination with a
realistic (nonlinear) synchronous machine drive demonstrate the
effectiveness and robustness against parameter and modeling
uncertainties of the proposed NAC and its very acceptable
constraints handling.

Index Terms—Synchronous Machine Drives, Constrained Op-
timization, Neuro-Adaptive Control

NOTATION

In this paper, the following notation is used:
• ⊗ denotes the Kronecker product [1, Definition 7.1.2].
• x = [xi]i∈{1,··· ,n} ∈ Rn denotes a vector.
• vec(A) := [row1(A

⊤), · · · , rowm(A⊤)]⊤ for A ∈
Rn×m where rowi(A) denotes the ith row of matrix A.

• In×n denotes the identity matrix of size n×n and On×m

denotes the zero matrix of size n×m.

I. INTRODUCTION

A. Motivation

Synchronous machines (SMs) are widely used in various
industrial applications, such as electric vehicles and robotics,
due to their high efficiency and robustness [2]. For control of
SMs, different nonlinear control strategies are developed, such
as a nonlinear proportional-integral controller [3, 4], funnel
control [5] or model predictive control [6]. However, these

This work was supported in part by GIST-IREF from Gwangju Institute
of Science and Technology (GIST), was supported in part by the National
Research Foundation of Korea (NRF) grant funded by the Korea government
(MSIT) (RS-2025-00554087).

control designs typically require exact system knowledge of
e.g., resistance(s) and flux linkages, which usually depend
nonlinearly on temperature or current and rotor position, re-
spectively. Moreover, the required data is usually not available,
which makes system identification a crucial but not trivial
and (very) time-consuming task. In addition, if the controllers
are not properly tuned and/or the physical constraints such
as current and voltage limits are not considered, the control
performance may deteriorate significantly [7].

In summary, due to the inevitable limitations above, ad-
vanced nonlinear control designs that learn on-line are de-
sirable to cope with unknown systems while guaranteeing
operation within physical constraints.

B. Related Works

To overcome the aforementioned limitations, several liter-
atures introduced neuro-adaptive control (NAC), which pro-
vides a promising solution for controlling SMs, as the incor-
porated artificial neural networks (ANNs) can learn the system
dynamics and uncertainties online. The ANNs are generally
used as estimators in the indirect adaptive control scheme,
where they estimate the unknown system parameters (e.g.,
inductance, flux linkages, etc.) [8] or dynamics [9, 10]. It is
notable that as the NACs are based on the adaptive control
theory, they are able to guarantee stability and convergence of
the tracking error in the sense of Lyapunov, even during the
learning phase. However, there is still room for improvement
in the existing NACs for SMs.

First, since most of the existing NAC approaches integrate
the ANNs in the conventional controller, they have to deal with
the large number of tuning parameters, which makes the design
and tuning process cumbersome. For the examples of the
integrations, ANNs have been integrated into the backstepping
scheme in [9, 11]. In [8], the ANNs are used to estimate and
cancel the effect of the unknown dynamics coupling in the
Lyapunov stability framework. Especially, in [10], the ANN
is utilized to compensate for the unknown dead-zone and
nonlinear functions in the funnel control scheme for servo
mechanisms. This allows to maintain the specific properties of



the conventional control design, such as optimality, robustness,
and stability, even though the system is unknown. However,
these integrations are not straightforward and often lead to
complex designs with many tuning parameters.

Furthermore, most of the existing NACs assume that the
control input saturation is not present or is neglected in the
design. In other words, to the best of the authors’ knowledge,
there is no existing NAC in SMs that considers the voltage
saturation in the adaptation law derivation, while several NAC
literatures for general systems introduced auxiliary systems
to address the control input saturation in the adaptation law
derivation directly [12, 13]. Only a few works consider the
voltage saturation with additional control design. For instance,
in [14], the saturated robust optimal control is used to avoid
the voltage saturation, using the estimated position and speed
of ANN-based observers. Despite the promising results, the
complexity of the control design and the number of tuning
parameters are significantly high.

C. Contributions

To the best of the authors’ knowledge, the online adapta-
tion law derivation by constrained optimization theory with
stability guarantees in a unified framework has not yet been
developed. Motivated by the discussion above, we propose a
novel constrained optimization-based neuro-adaptive control
(CONAC) for the SMs. Main contributions of this paper are:

• No prior system information is required for controller
design, tuning and implementation, since the ANN in the
CONAC approximates the unknown system dynamics and
unknown system parameters online;

• As the entire desired control law is approximated by
the ANN, the CONAC has less tuning parameters than
existing NAC designs;

• The adaptation laws are derived based on a constrained
optimization problem, which is reformulated from the
original control problem, by considering the boundedness
of ANN weight and input (voltage) saturation as corre-
sponding inequality constraints; and

• Using Lyapunov theory, the boundedness of control
(tracking) error and ANN weights is guaranteed. The
physical constraints are handled properly as well.

D. Synchronous Machine Dynamics

We consider nonlinear SMs, modeled by [15, Chapter 14],

sat(udq
s,ref) = R

dq
s i

dq
s + ωpJψ

dq
s + d

dtψ
dq
s (1)

with J :=
[
0 −1
1 0

]
, stator voltages reference to voltage source

inverter (VSI) udq
s,ref := (ud

s,ref , u
q
s,ref)

⊤ ∈ R2, stator currents
idqs := (ids , i

q
s )

⊤ ∈ R2, stator resistance matrix Rdq
s :=

Rdq
s (idqs , ϕp, ωp) ∈ R2×2, and electrical angle ϕp ∈ R and

angular velocity ωp ∈ R. The stator voltages are saturated due
to physical limitations of the utilized VSI by the saturation
function sat(·) such that ∥sat(udq

s,ref)∥ ≤ umax ∈ R>0, where
umax denotes the maximum voltage amplitude. In general,
the stator flux linkages ψdq

s := ψdq
s (idqs , ϕm) ∈ R2, depend

VSI SMCONAC
      

 

 

 

 

 Figure 1: Schematic of the CONAC.

on idqs and ϕm ∈ R which is ϕp divided by pole pair
number np. Therefore, the last term of (1) can be written as
d
dtψ

dq
s = d

dtψ
dq
s = [ ∂

∂i
dq
s

ψdq
s ] ddti

dq
s + [ ∂

∂ϕm
ψdq

s ] ddtϕm, where
∂

∂i
dq
s

ψdq
s is typically referred to differential inductance matrix

Ldq
s := Ldq

s (idqs , ϕm) ∈ R2×2. This allows to rewrite (1) as
current dynamics

d
dti

dq
s = (Ldq

s )−1( sat(udq
s,ref)−R

dq
s i

dq
s −ωpJψ

dq
s −δdqs

)
, (2)

where δdqs := [ ∂

∂i
dq
s

ψdq
s ] ddtϕm ∈ R2 is the induced voltage due

to harmonics in the flux linkages.
For convenience, (2) is rewritten in standard form

d
dtx = f(x, sat(u)) (3)

with state variable x := idqs ∈ R2, control input
u := udq

s,ref ∈ R2 and system function f(x, sat(u)) :=

(Ldq
s )−1(sat(udq

s,ref)−R
dq
s i

dq
s −ωpJψ

dq
s −δdqs ) : R2×R2 →

R2. In addition, let ū denotes the maximum voltage amplitude
umax. For the following, let B(x, sat(u))) := ∂f(x,sat(u))

∂ sat(u)
which denotes the Jacobian matrix (also known as the input
matrix) of the system function f(x, sat(u)) with respect to
sat(u).

E. Control Objective

The objective of this paper is to design a CONAC that
guarantees reference tracking of a continuously differentiable
reference signal xref := idqs,ref(t) : R → R2 under the
voltage saturation introduced above. The following assumption
is imposed:

Assumption 1. The reference signal xref is (essentially)
bounded and available to design a feasible control input in
the presence of the control input saturation.

II. CONTROLLER DESIGN

This section details the design of the novel CONAC, which
is illustrated in Fig. 1. First, a few mathematical preliminaries
are restated. Then, the NAC design is introduced. Later, the
adaptation laws are derived based on a constrained optimiza-
tion, resulting in CONAC.

A. Mathematical preliminaries

Later, the following proposition will be used:

Proposition 1 (see [1, Proposition 7.1.9]). For matrix A ∈
Rn×m and vector b ∈ Rn, we have the following property

A⊤b = vec(A⊤b) = vec(b⊤A) = (Im ⊗ b⊤) vec(A).



Moreover, exploiting physical SM properties, the following
fact and assumption are considered:

Fact 1. The input matrix B(x, sat(u))) is the inverse of Ldq
s

(recall (2)). Therefore, B(x) := B(x, sat(u))) is a positive
definite nonsingular matrix which only depends on x, since
Ldq

s , itself is a positive definite matrix [15, Chapter 14].

Assumption 2. [16, Assumption 1(b)] There exists an un-
known positive function β(x) : R2 → R>0 such that
1
2v

⊤[ ddtB(x)−1]v ≤ β(x)∥v∥2 for all v ∈ R2.

Remark 1. [16, Remark 1 (b)] Assumption 2 is not restrictive,
since only the existence of β(x) is assumed, regardless of its
sign.

B. Neuro-Adaptive Control Design

Before NAC design, we first define a desired control input
u∗ ∈ R2 which will be approximated by the ANN. Motivated
by the control design introduced in [16], consider the Lya-
punov function candidate V1 := 1

2e
⊤B(x)−1e ≥ 0, where

e := x−xref denotes the tracking error of the state. The time
derivative of V1 is obtained as follows
d
dtV1 =e⊤B−1(x)

(
f(x, sat(u))− d

dtxref

)
+ 1

2e
⊤d
dtB

−1(x)e

≤e⊤B−1(x)(f(x, sat(u))− d
dtxref) + β(x)∥e∥2

=− k∥e∥2 + e⊤B−1(x)·
×
(
kB(x)e+ f(x, sat(u))− d

dtxref + β(x)B(x)e
)︸ ︷︷ ︸

=:f̄(x,sat(u),xref ,
d
dtxref )

,

(4)
where k > 0 is an arbitrary (unknown) positive constant gain.
According to (4), if we can realize a control input u∗ such
that f̄(x, sat(u∗),xref ,

d
dtxref) = 0, then the tracking error e

exponentially converges to zero, i.e., d
dtV1 ≤ −k∥e∥2.

To define a desired stabilizing control input u∗, one can
use the implicit function theorem [17, see, p. 651]. Using
the implicit function theorem, one can conclude that there
exists u∗ such that f̄(x,u∗,xref ,

d
dtxref) = 0 by invoking

∂f̄(·)
∂ sat(u) = ∂f(·)

∂ sat(u) = B(x) and using Fact 1 (i.e., B(x) is
nonsingular ∀u ∈ R2). Note that, according to Assumption 1,
u∗ can be supposed to be not saturated such that ∥u∗∥ ≤ ū
and sat(u∗) = u∗.

Next, the mean value theorem [17, see, p. 651] is applied
to define ul := c sat(u) + (1− c)u∗ for c ∈ [0, 1], such that
f̄(sat(u))− f̄(u∗) = ∂f̄(·)

∂ sat(u)

∣∣
u=ul

(sat(u)−u∗), where the
arguments (x, sat(u),xref ,

d
dtxref) of f̄(·) are suppressed as

(sat(u)) for brevity. Adding −e⊤B(x)−1f̄(u∗) = 0 in the

right side of (4) yields
d
dtV1 ≤− k∥e∥2 + e⊤B(x)−1f̄(sat(u))

=− k∥e∥2 + e⊤B(x)−1(f̄(sat(u))− f̄(u∗)
)

=− k∥e∥2 + e⊤B(x)−1( ∂f̄(·)
∂ sat(u)

∣∣
u=ul

(sat(u)− u∗)
)

=− k∥e∥2 + e⊤B(x)−1(B(x)(sat(u)− u∗)
)

=− k∥e∥2 + e⊤
(
sat(u)− u∗)

≤− k∥e∥2 + 2ū∥e∥

≤ − k(∥e∥ − ū
k )

2 + ū
2

k .
(5)

According to (5), d
dtV1 is negative definite when e leaves a

compact set {e ∈ R2 | ∥e∥ ≤ 2ū
k }.

Inspired by [12] an ANN is employed to approximate the
entire desired control input u∗. Since the SM controller must
run with high sampling rates, only a simple ANN Φ : Rl0 ×
RΞ → R2 with one hidden layer is selected. It is represented
as

Φ(xn;θ) =W
⊤
1 ϕ(W

⊤
0 xn)

where W i ∈ R(li+1)×li+1 for i ∈ {0, 1} is the weighting ma-
trix of ith layer, ϕ : Rl1 → Rl1+1 is the activation function, and
xn ∈ Rl0+1 is the input vector. The input, hidden, and output
layers have l0, l1, and l2 nodes, respectively. For simplicity, the
weighting matrices are vectorized as θi := vec(W i) ∈ RΞi

for i ∈ {0, 1} where Ξi := (li+1)li+1, and augmented as θ :=(
θ⊤0 ,θ

⊤
1

)⊤ ∈ RΞ, where Ξ = Ξ0+Ξ1. The activation function
is defined as element-wise nonlinear function σ(·) : R → R
and augmentation 1 to account for bias term in the weighting
matrices such that ϕ(x) =

(
σ(x1), · · · , σ(xl1

), 1
)⊤

for some
vector x = (x1, · · · , xl1

)⊤ ∈ Rl1 . The nonlinear function σ(·)
is chosen as tanh(·) in this paper for the boundedness of its
output and derivative.

According to the universal approximation theorem [18],
ANNs whose activation functions are sigmoidal functions
(e.g., sigmoid or tanh(·)) can approximate any continuous
nonlinear function g(xn) with a small bounded approxima-
tion error ϵ̄ ∈ R>0 in a compact set xn ∈ Ω such that
supxn∈Ω∥Φ(xn;θ

∗) − g(xn)∥ = ϵ̄ < ∞, where θ∗ :=

(θ∗⊤0 ,θ∗⊤1 )⊤ ∈ RΞ denotes the ideal weighting vector. Since
the ideal weighting vector is unknown, the estimate of weight-
ing vector θ̂ := (θ̂

⊤
0 , θ̂

⊤
1 )

⊤ ∈ RΞ is used in the controller. The
ideal and estimated control inputs are represented as follows

u∗ =Φ(xn;θ
∗) + ϵ, (6a)

u =Φ(xn; θ̂), (6b)

where ϵ ∈ R2 is the bounded approximation error vector such
that ∥ϵ∥ ≤ ϵ̄ < ∞.

Substituting the control inputs (6a) and (6b) in (5), the time
derivative of V1 is obtained as follows

d
dtV1 ≤ −k∥e∥2 + e⊤(sat(Φ̂)−Φ∗ − ϵ) (7)

where Φ̂ := Φ(xn; θ̂) and Φ∗ := Φ(xn;θ
∗). This con-



cludes that e can be driven to zero by adapting θ̂ such that
Φ(xn; θ̂) → Φ(xn;θ

∗) if ∥ϵ∥ is sufficiently small. It is
notable that, since the equality Φ(xn; θ̂) = Φ(xn;θ

∗) does
not hold in learning phase, only the boundedness of e will be
ensured in Section III. Importantly, input (voltage) saturation
is not yet considered; this will be done next.

C. Constrained Optimization-Based Adaptation Law
The adaptation law is derived from the constrained opti-

mization theory. First, the control problem is reformulated into
the following constrained optimization problem:

minθ̂ J(e; θ̂) =
1
2e

⊤e,

subject to

{
cθi(θ̂) =

1
2 (θ̂

⊤
i θ̂i − θ̄2i ) ≤ 0, ∀i ∈ {0, 1}

cu(θ̂) =
1
2 (Φ̂

⊤
Φ̂− ū2) ≤ 0

(8)
where J : R2 × R2 → R is the objective function, and cθi :

RΞi ×RΞi → R for i ∈ {0, 1} and cu : R2 ×R2 → R are the
inequality constraints for the weights and the control input,
and θ̄i ∈ R>0 and ū are the positive maximum values of ∥θ̂i∥
and ∥u∥, respectively. The estimated weighting vector θ̂ is the
optimization variable of (8). The corresponding Lagrangian
function of (8) is defined by

L(e, θ̂, [λj ]j∈I) := J(e; θ̂) +
∑

j∈I λjcj(θ̂) (9)

where I := {θ0, θ1, u} is a set of imposed inequality constraint
functions and λj ∈ R≥0, ∀j ∈ I are the corresponding
Lagrangian multipliers.

To solve the dual problem of (9) (i.e., minθ̂ max[λj ]j∈I

L(e, θ̂, [λj ]j∈I)), the adaptation law is derived as follows:

d
dt θ̂ = −α∂L

∂θ̂
= −α

(
∂J

∂θ̂
+
∑

j∈I λj
∂cj

∂θ̂

)
(10a)

d
dtλj = βj

∂L
∂λj

= βjcj , ∀j ∈ I (10b)

λj = max(λj , 0), (10c)

where α ∈ R>0 and βj ∈ R>0 are the adaptation gain and
update rate of the corresponding Lagrange multipliers. Note
that the Lagrange multipliers are always semi-positive due to
(10c).

In the adaptation law (10a), one needs to calculate the partial
derivative of the state vector with respect to the control input
∂x
∂u ∈ R2×2 (also called the sensitivity function [17, see,

Sec. 3.3]) for ∂J

∂θ̂
=

(
( ∂e
∂u )(

∂u

∂θ̂
)
)⊤
e =

(
( ∂x∂u )(

∂Φ̂

∂θ̂
)
)⊤
e.

The exact method to obtain the sensitivity function is the
forward sensitivity method [19] which simulates the sensi-
tivity equation d

dt (
∂x
∂u ) = ∂

∂u (f(x, sat(u))). However, the
sensitivity equation cannot be simulated, since the system
functions are unknown and in view of the present saturation.
Furthermore, simulating the sensitivity equation requires large
memory allocation and computational cost, since the number
of weights is generally large for ANNs.

To overcome this issue, the sensitivity matrix should be
approximated. The simplest approximation is to use the sign
of each entry (i.e., control direction) of the Jacobian ∂x

∂u

as ∂x
∂u ≈ [sign( ∂xi

∂uj
)]i,j∈{1,2} [20]. However, for the given

system, the control direction is unknown, but the positive or
negative definiteness of the control input matrix is known.
Therefore, in view of Fact 1 the sensitivity matrix is approx-
imated as ∂x

∂u ≈ I2 and the adaptation law can be simplified
as follows:

d
dt θ̂ = −α

(
∂Φ̂

∂θ̂

⊤
e+

∑
j∈I λj

∂cj

∂θ̂

)
. (11)

The gradients of the ANN with respect to weights can be
calculated using Proposition 1 and the chain rule as follows

∂Φ̂

∂θ̂
=

[
∂Φ̂

∂θ̂0

∂Φ̂

∂θ̂1

]
∈ R2×Ξ,

where ∂Φ̂

∂θ̂0

= (I l2 ⊗ ϕ̂
⊤
), ∂Φ̂

∂θ̂1

= Ŵ 1⊤ϕ̂
′
(I l1 ⊗ x

⊤
n ), and

ϕ̂ := ϕ(Ŵ
⊤
0 xn) and ϕ̂

′
:= ∂ϕ̂

∂(Ŵ 0
⊤
xn)

. The remaining partial
derivative terms in (11) are calculated as follows:

∂cθ0
∂θ̂

=

(
θ̂0

0Ξ1×1

)
,

∂cθ1
∂θ̂

=

(
0Ξ0×1

θ̂1

)
, ∂cu

∂θ̂
= ∂Φ̂

∂θ̂

⊤
Φ̂.

III. STABILITY ANALYSIS

The following theorem shows the boundedness of e and θ̂.

Theorem 1. For dynamical system (3), the neuro-adaptive
controller (6b), and weight adaptation law (10) ensures bound-
edness of tracking error e(·) and weights θ̂(·) while the
imposed constraints cθi(·) i ∈ {0, 1} and cu(·) are considered.

Proof. The stability analysis is conducted by the Lyapunov
stability theory. Without loss of generality, weight constraint
cθi , ∀i ∈ {0, 1} is assumed to be violated. This is because,
even if cθi , ∀i ∈ {0, 1} is satisfied, θ̂i, ∀i ∈ {0, 1} is adapted
to reduce J(·) without considering the constraint, unless cθi is
violated. Therefore, this does not affect the stability analysis.
We consider two cases: control input saturation is active and
control input saturation is not active.

Case 1: Control input saturation is active.

According to the result of (5), the time derivative of the
Lyapunov function V1 is negative when the tracking error e
leaves the invariant set Θ1

e defined as Θ1
e := {e ∈ R2 | ∥e∥ ≤

2ū
k }.

Consider the Lyapunov function candidate V2 := 1
2α θ̂

⊤
1 θ̂1

to investigate the boundedness of the outer layer’s weight θ̂1
and the satisfaction of cθ1 and cu. Using Proposition 1, the
time derivative of V2 is obtained as follows:

d
dtV2 =− θ̂

⊤
1 ((I l2 ⊗ ϕ̂

⊤
)⊤e+ λθ1

θ̂1 + λu(I l2 ⊗ ϕ̂
⊤
)⊤Φ̂)

≤∥(I l2 ⊗ ϕ̂
⊤
)∥∥θ̂1∥∥e∥ − λθ1

∥θ̂1∥
2

− λuθ̂
⊤
1 (I l2 ⊗ ϕ̂

⊤
)⊤ (I l2 ⊗ ϕ̂

⊤
)θ̂1︸ ︷︷ ︸

=Φ̂

≤− (λθ1
+ λuc1)∥θ̂1∥

2 + c2∥e∥∥θ̂1∥
≤ − (λθ1

+ λuc1)∥θ̂1∥
2 + 2c2ū

k ∥θ̂1∥.



where c1 := λmin((I l2 ⊗ ϕ̂
⊤
)⊤(I l2 ⊗ ϕ̂

⊤
)) ∈ R≥0 and c2 :=

∥(I l2 ⊗ ϕ̂
⊤
)∥ ∈ R≥0. In the same manner, the invariant set of

θ̂1 is defined as Θ1
θ1

:= {θ̂1 ∈ RΞ1 | ∥θ̂1∥ ≤ 2c2ū
k(λθ1

+λuc1)
}.

This implies that if λθ1
sufficiently increases by the constraint

violation, (i.e., see, (10b)) cθ1 can be satisfied. On the other
hand, by multiplying c2 to both sides of ∥θ̂1∥ ≤ 2c2ū

k(λθ1
+λuc1)

,
the following inequality is obtained:

∥Φ̂∥ ≤ ∥I l2 ⊗ ϕ̂∥∥θ̂1∥ = c2∥θ̂1∥ ≤ 2c
2
2ū

k(λθ1
+λuc1)

.

Therefore, similarly, cu can be satisfied by sufficiently large
λu.

The boundedness of the inner layer’s weight θ̂0 and the
satisfaction of cθ0 can be shown in the same way as those of
the outer layer.

Case 2: Control input saturation is not active.

In this case, the saturation function can be removed in (7).
Consider the Lyapunov function candidate V3 := V1 + V2.
Using Proposition 1, the time derivative of V3 is given by

d
dtV3 ≤− k∥e∥2 + e⊤(Φ̂−Φ∗ − ϵ) + θ̂

T

1
d
dt θ̂1/α

=− k∥e∥2 + e⊤Φ̂+ e⊤(−Φ∗ − ϵ)

− θ̂
⊤
1 (I l2 ⊗ ϕ̂

⊤
)⊤e− λθ1

θ̂
⊤
1 θ̂1

=− k∥e∥2 + e⊤Φ̂+ e⊤(−Φ∗ − ϵ)

− Φ̂
⊤
e− λθ1

θ̂
⊤
1 θ̂1

≤− k∥e∥2 + ∥Φ∗ + ϵ∥∥e∥ − λθ1
∥θ̂1∥

2.

Therefore, one can conclude that e is bounded and θ̂1 con-
verges to zero until the weight constraint cθ1 is satisfied. The
invariant set of e is defined as Θ2

e := {e ∈ R2 | ∥e∥ ≤ ū
k }

(see, (6a)). The boundedness of θ̂0 and the satisfaction of cθ0
can be shown similarly as Case 1.

In conclusion, the tracking error e and the estimated weights
θ̂ are bounded, satisfying the imposed constraints cθi , ∀i ∈
{0, 1} and cu.

IV. IMPLEMENTATION AND VALIDATION

The proposed CONAC is validated via numerical simulation
in MATLAB & Simulink R2024b. The sampling time of the
controller is 125 µs, and simulation sampling time is 100
times faster than the controller. The utilized interior permanent
magnet synchronous motor’s (IPMSM’s) flux linkage maps are
identified from a real machine in the laboratory and shown in
Fig. 2. Further, system and simulation parameters are listed in
Table I.

The reference current pattern of the simulation scenario
consists of step signals whose amplitudes increase from zero
to 4.19 A, and the step’s time lengths are 40 ms. For the d-axis,
the sign of the reference currents is negative, while for the q-
axis, the reference sign alternates repeatedly between positive
and negative values. To investigate cross-coupling effects, the
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Figure 2: The stator flux linkages of the IPMSM at the rated
mechanical speed ωm,R = 240.855 rad/s.

Table I: IPMSM parameters.

Symbol Description Value

pm,R rated mech. power 2.5 kW

ωm,R rated mech. speed 240.855 rad/s

mm,R rated mech. torque 10.5Nm

ids,max max d current 4.19A

iqs,max max. q current 4.19A

umax max. voltage 340V

Rs stator resistance 1.475 Ω

q-axis reference current is applied 20 ms earlier than the d-
axis reference step. To illustrate how the ANNs adjust their
weights over time, the reference pattern is presented twice,
labeled as Episode 1 and Episode 2.

The operating point of the IPMSM is set to the rated
mechanical speed of ωp = 240.855 rad/s. However, due to the
high mechanical speed, the system may become unstable at
the beginning of implementation with the randomly initialized
weights. To avoid this, the mechanical speed is gradually
increased from zero to the rated mechanical speed over 0.5
s, while maintaining a zero current reference for warm start.
Once the rated mechanical speed is reached, the reference
current pattern is applied after a brief idle period of 0.25 s.
Additionally, a low-pass filter (LPF) with a cutoff frequency
of 200 Hz is used to smooth the transition by attenuating high-
frequency components in the reference signal.

For the comparative study, the CONAC with control input
constraint cu (C1) and without control input constraint (C2)
were simulated. The shared parameters of (C1) and (C2)
are as follows: l0 = 4, l1 = 32, l2 = 2, α = 30 and
βθ0

= βθ1
= 10. The update rate βu is set as 5×10−3 for (C1)

and βu = 0 for (C2) so that the control input constraint is not
imposed in (C2). The input vector of the ANNs is defined as
xn =

(
(idqs )⊤, (idqs,ref)

⊤, 1
)⊤ ∈ R5. The weights of the ANNs

are uniformly initialized in the range of [−10−5, 10−5]. The
parameters of constraints are set as θ̄0 = 12.649, θ̄1 = 80, and
ū = umax.

The quantitative evaluation of the tracking performance
and the satisfaction of cu is conducted by L2 norm (i.e.,√∫ T

0
∥ζ∥2 dt, where T is the time duration and ζ ∈ {ids −
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Figure 3: Simulation results of the CONAC with control input
constraint (C1) (blue) and without control input constraint (C2)
(cyan), and reference signal of idqs (red dashed line) at the rated
mechanical speed 240.855 rad/s.

ids,ref , i
q
s − iqs,ref ,max(cu, 0)}).

A. Simulation Results

1) Effectiveness of Neural Network: The control results of
(C1) and (C2) are shown in Fig. 3, and the evaluation of the
tracking performance by L2 norm is provided in Table II. For
both cases (C1) and (C2), the ANNs were well-trained to track

Table II: Quantitative comparison of performances’ L2 norm.

Episode 1 Episode 2

(C1) (C2) % (C1) (C2) %

ids − ids,ref 1.835 1.835 +0.0 0.119 0.117 +1.3

iqs − iqs,ref 0.597 0.591 +1.0 0.157 0.126 +19.6

max(cu, 0) 0.297 2.031 −85.9 0.488 3.251 −85.0

Figure 4: The effect of Lagrange multiplier λθi
on the adap-

tation direction of θ̂i. The notation (·′) and (·′′) represent
two different cases of bigger and smaller Lagrange multiplier,
respectively (i.e., λ′

θ1
> λ′′

θ1
).

the reference signal of ids (see Fig. 3a) and iqs (see Fig. 3b)
over 2 episodes. At the beginning of Episode 1, the training
results in a non-desired tracking performance. However, the
ANNs quickly adapt their weights to track the reference signal
by approximating the ideal control input. The L2 norm of ids
and iqs are reduced by 93.5% and 73.7% for (C1) and 93.6%
and 78.7% for (C2), respectively, during Episode 2 (see Fig. 3a
and 3b). Furthermore, the settling time of ids is about 5 ms and
6 ms for iqs for both controllers during Episode 2. Note that
the slightly slow settling time of iqs in Episode 2 (see right-
hand side of Fig. 3b) is due to the control input constraint
cu. Moreover, the overshoots of the ids and iqs and the cross-
coupling effects were significantly mitigated in Episode 2 after
training during Episode 1.

2) Constraint Handling: The constraint handling is now in-
vestigated. In Fig. 3d and Fig. 3e, the norms of θ̂i, ∀i ∈ {0, 1}
and the corresponding λθi

, ∀i ∈ {0, 1} are shown. According
to (10b), λθi

was generated from zero when the norm of θ̂i
exceeds the constraint θ̄i and altered the adaptation direction
defined in (10a) to drive θ̂i towards more satisfactory points.
The influence of λθi

on θ̂i is illustrated in Fig. 4. When
the norm of θ̂i was within the constraint (i.e., cθi < 0), the
Lagrange multiplier λθi

decreases to zero, i.e., see, (10b).
Similarly, the constraint handling of control input saturation

can be investigated. Without constraints on the control input,
the control input of (C2) significantly exceeds the limit ū, as
shown in Fig. 3c. This allowed (C2) to make assertive control
decisions resulting in a slightly faster settling time of iqs and
19.6% smaller L2 norm of iqs during Episode 2 (see right-
hand side of Fig. 3b). However, since (C2) does not have any



information about the saturation, it increases the control input
excessively large to track the reference signal despite the fact
that the control input is saturated and distorted. On the other
hand, (C1) not only attempts to track the reference signal
but also considers the control input constraint. Therefore,
for case (C1), the proposed CONAC adapts its weights with
respect to the tracking errors in both axes with lower cu
violation. As a result, L2 norm of the control input violation
is reduced by 85.9% and 85.0% during Episode 1 and Episode
2, respectively, compared to (C2). It is worth noting that there
is still a small violation of cu in (C1) during Episode 2, which
is due to the discrete control of a continuous system.

V. CONCLUSION

Constrained optimization-based neuro-adaptive control
(CONAC) was proposed for synchronous machine (SM) drives
with input voltage saturation. The CONAC is designed to
track a typical stator current reference signal by approximating
the ideal control input by a artificial neural network (ANN)
with one hidden layer. The weight adaptation law is derived
by constrained optimization theory to ensure boundedness of
tracking error and weights. The high-fidelity simulation results
of a realistic (nonlinear) SM show that the CONAC can track
the reference signal and adapt its weights and control action
within the constraints.

As future work, the parameter dependencies of the CONAC
will be investigated in more detail to select an optimal ANN
topology. Furthermore, the CONAC will be implemented in
a real-time control system to validate the effectiveness of the
proposed method and its feasibility in the laboratory.
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