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Abstract—This paper proposes a design method for linear ma-
trix inequality (LMI)-based neural network (NN) observer gain in
discrete-time domain. The proposed scheme employs an NN with
a single hidden layer to approximate the lumped nonlinear term
which includes uncertainties. A Lyapunov function is constructed
to guarantee the stability of both the linear observer and the
NN updates. The observer gain is determined by solving the
LMI conditions, and the design is simplified by minimizing the
number of tuning parameters, using a common gain structure for
all vertices. Furthermore, designing an H∞ observer can reduce
the effect of NN approximation error and the measurement noise.
The key advantages of the proposed method lie in its optimal
LMI-based observer gain design, minimal tuning parameter
requirement, and the capability to estimate both the system states
and the lumped nonlinear term simultaneously. Simulation results
indicate that the proposed method successfully tracks the actual
states and the lumped nonlinear term and reduce the effects
of NN approximation error and the measurement noise with
comparison of the root mean square error (RMSE) values.

Index Terms—neural networks (NN), linear matrix inequalities
(LMI), H∞ observers, discrete-time nonlinear systems

I. INTRODUCTION

State estimation is important in the analysis and control of
nonlinear systems. In particular, the problem of simultaneously
estimating the system states and the nonlinearities in the
discrete-time domain has received considerable attention over
the past decades [1]–[3]. This task becomes significantly
more challenging in the presence of system uncertainties,
external disturbances, and measurement noise, all of which
are common in practical engineering systems.

To address these challenges, various observer design tech-
niques have been proposed, including Extended Kalman Fil-
ters [4]–[6], Sliding Mode Observers [7]–[9], and neural
network-based observers [10]–[12]. In [10], the update law
of the weight matrices using backpropagation, combined with
an e-modification term to incorporate damping, was proposed.
However, this method requires the selection of many tuning
parameters and does not guarantee stability, as it only keeps
the estimation error within a bounded region. Due to these
factors, the system may exhibit a tendency to diverge over
time in response to rapid changes in operating point. In [11],
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a gain design approach based on LMI was presented to esti-
mate the system state and update the neural network weight.
Although this method allows for the computation of optimal
gains and demonstrates robustness against external factors
such as measurement noise, it may exhibit divergence after
discretization due to the formulation in the continuous-time
domain. In addition, similar to previous approach, it involves
a large number of tuning parameters, making it complex and
highly sensitive to parameter selection.

This paper focuses on the design of a discrete-time observer
using a neural network with a single hidden layer to esti-
mate both the system states and the lumped nonlinear term,
which includes uncertainties. A linear observer is augmented
with an NN-based nonlinear estimator, and a Lyapunov-based
approach is employed to ensure the stability of the overall
estimation scheme.

The proposed scheme determines the observer gain by solv-
ing an LMI-based problem, which is the gain that satisfies the
stability for all vertices of the system. The number of tuning
parameters is minimized, which simplifies the implementation
and reduces design complexity. In addition, a neural network-
based observer design that guarantees H∞ performance to
reduce the impact of the approximation error or measurement
noise in the proposed method. Simulation results validate
the effectiveness of the proposed LMI-based NN observer
to accurately track the states and the nonlinear term and
reduce the effects of the NN approximation error and the
measurement noise with comparing the root mean square error.

II. PROBLEM STATEMENT

The following equation represents a discrete-time system
with unknown uncertainties and measurement noise:

xk+1 = Axk +Buk + Ff(xk),

yk = Cxk + nk,

f(xk) = Wkσ(Nzk) + εk,

(1)

where x ∈ Rn is the state vector, u ∈ Rm is the known input
vector, f(xk) ∈ Rr is the uncertainties of the system, y ∈ Rp

is the output vector, and n ∈ Rp denotes the measurement
noise vector, respectively. A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,
and F ∈ Rn×r are the known constant matrices, and the matrix
A is a Hurwitz matrix. The uncertainties f(xk) is represented
with a single hidden layer neural network form with the weight



matrix W ∈ Rr×h, the diagonal normalization matrix N ∈
Rh×h, the input of neural network z ∈ Rh, the neural network
approximation error ε ∈ Rr, and the activation function σ(·).
The index k indicates the discrete-time step.

Assuming that the selected activation function σ(·) is
bounded such that

−∞ < σmin ≤ σ(·) ≤ σmax < ∞. (2)

III. NEURAL NETWORK-BASED OBSERVER

This section presents an NN-based observer for estimating
the state vector and the lumped nonlinear term.

A. Observer Design

Based on the model (1), the observer is designed as follow:

x̂k+1 = Ax̂k +Buk + Ff(x̂k) + L(yk − ŷk),

ŷk = Cx̂k,

f(x̂k) = Ŵkσ(Nẑk),

(3)

with the estimated state vector x̂, estimated output vector
ŷ, the observer gain L ∈ Rn×p, and the nonlinear term f(x̂k)
where Ŵ is updated weight matrix by an adaptive law to
approximate the ideal weight matrix W . The scheme of the
estimated nonlinear term f(x̂k) is depicted in Figure 1. The
estimation error dynamics is obtained by subtracting (1) by
(3) as follows:

x̃k+1 = (A− LC)x̃k + FW̃kσ(ẑk) + ϕk,

ỹk = Cx̃k + nk,
(4)

where the estimation error x̃k = xk − x̂k, and ϕk =
FŴk(σ(Nzk)−σ(Nẑk))+Fεk −Lnk. To facilitate stability
analysis, the error term FW̃kσ(Nẑk) in the error dynamics
(4) is reformulated to F Σ̂kw̃k with

Σ̂k = Ir ⊗ σ(Nẑk)
T ,

w̃k =


w̃T

1

w̃T
2
...

w̃T
r


k

,
(5)

where ⊗ denotes the Kronecker product, Ir is a r× r identity
matrix, w̃i is the row vector for ith row in the weight matrix
W̃ .

The estimation error x̃k converges to zero with the adaptive
law that makes the term F Σ̂kw̃k to zero. Such adaptive law
is proposed based on the backpropagation as follows:

ŵk+1 = ŵk − Tsη
∂Jk
∂ŵk

, (6)

with loss function Jk := 1
2 ỹ

T
k ỹk, the sampling time Ts, and the

learning rate η. Using the chain rule to solve (6), the adaptive
law is represented as follows:

ŵk+1 = ŵk + TsηΣ̂
T
k F

T (In −A)−TCT ỹk. (7)

To represent the error dynamics for weight vector w, the
static approximation method(i.e. wk+1 = wk) is used. Finally,

Fig. 1: Schematic diagram of the proposed NN estimator.

the error dynamics of the weight vector is represented as
follows:

w̃k+1 = w̃k − TsηΣ̂
T
k F

T (In −A)−TCTCx̃k + φk, (8)

with φk = −TsηΣ̂
T
k F

T (In −A)−TCTnk.

B. Stability Analysis

The error dynamics (4) and (8) is reformulated the aug-
mented state as follows:[

x̃k+1

w̃k+1

]
︸ ︷︷ ︸

ξk+1

=

[
A− LC F Σ̂k

−TsηΣ̂
T
k F

T (In −A)−TCTC Ih

]
︸ ︷︷ ︸

A(Σ̂k)

[
x̃k

w̃k

]
︸ ︷︷ ︸

ξk

+

[
ϕk

φk

]
︸ ︷︷ ︸

δk

,

(9)
with Ih is the h× h identity matrix.

The time-varying matrix A(Σ̂k) can be represented with
affine parameter dependent model as follows:

A(Σ̂k) = A0 +A1Ωk +ΩT
kA2, (10)

where Ωk =

[
0 0

0 Σ̂k

]
, A0 is the matrix with constant

components of A(Σ̂k), A1 and A2 are the matrices where
all elements are zero except for the matrix corresponding to
Σ̂k. By the boundedness of σ(·) defined in (2), the matrix Σ̂k

is element-wise bounded as well. Since A(·) is affine with
respect to Σ̂k, stability of the system can be guaranteed over
the entire bounded set if the stability condition is satisfied at
all vertices of the uncertainty set. Using this approach, the
observer gain L can be designed to satisfy 2h LMI conditions
corresponding to the vertices of the uncertainty set.

Theorem 1 presents a condition that guarantees the stability
of the error dynamics (9).

Theorem 1: The estimation error dynamics (9) is stable

if there exist matrices P = PT =

[
P1 0
0 P2

]
> 0 and R of

appropriate dimensions such that the following inequality is



feasible: Γ + (2α− 1)P A(Σ̂k)
TP ΠT

PA(Σ̂k) P 0
Π 0 −P1

 ≤ 0,

Γ =

[
ATP1A−ATRC − CTRTA+AT

21P2A21

AT
12P1A−AT

12RC + P2A21

ATP1A12 − CTRTA12 +AT
21P2

AT
12P1A12 + P2

]
,

Π =
[
RC 0

]
A12 = F Σ̂k,

A21 = −TsηΣ̂
T
k F

T (In −A)−TCTC.
(11)

When the inequality (11) is feasible, the linear observer gain
L is given by L = P−1

1 R and ensures that limt→∞ x̂k = xk

exponentially.
Proof: To verify the stability of the proposed observer, the

Lyapunov function is defined as follows:

Vk = ξTk Pξk. (12)

Now, it remains to prove that ∆V = Vk+1 − Vk ≤ −2αVk

for all ξk ̸= 0:

∆V = ξTk (ATPA− P )ξk + ξTk ATPδk

+ δTk PAξk + δTk Pδk.
(13)

In order to satisfy the condition ∆V ≤ −2αVk, the
following inequality should be satisfied:[

ξk
δk

]T
M

[
ξk
δk

]
≤ 0, (14)

where M =

[
ATPA+ (2α− 1)P ATP

PA P

]
and α is a

fixed positive scalar that determines the convergence speed
of the system (9).

Then, using the Schur complement, the notation R = P1L

and P =

[
P1 0
0 P2

]
, the inequality (11) can be derived from

the condition M ≤ 0. Therefore, ∆V ≤ −2αVk for all ξk ̸=
0.

IV. H∞ NEURAL NETWORK-BASED OBSERVER

In this section, the robust H∞ neural network observer is
proposed to reduce the effects of δk such as the approximation
error εk, and the measurement noise nk. The observer gain
with H∞ gain γ is determined as follows:

sup
0<∥δk∥2<∞

∥ξk∥2
∥δk∥2

≤ γ, (15)

where γ > 0 is an upper bound of H∞ performance. This can
be done by Theorem 2.

Theorem 2: For a positive scalar γ, the estimation error

(9) converges if there exist matrix P = PT =

[
P1 0
0 P2

]
> 0

and R of appropriate dimensions such that the following

inequality is feasible:Γ + (2α− 1)P + I A(Σ̂k)
TP ΠT

PA(Σ̂k) P − γ2I 0
Π 0 −P1

 ≤ 0.

(16)
When the inequality (16) is feasible, the linear observer gain

L is given by L = P−1
1 R and ensures that limt→∞ x̂k = xk

exponentially and minimizes the impact of NN approximation
error or the measurement noise.

Proof: The H∞ performance condition (15) is satisfied if
the following inequality holds.

VH = ∆V + ∥ξk∥2 − γ2∥δk∥2 ≤ 0. (17)

The inequality (17) becomes

ξTk (ATPA− P + I)ξk + ξTk ATPδk

+ δTk PAξk + δTk (P − γ2I)δk.
(18)

The condition VH ≤ −2αVk can be represented in matrix
form: [

ξk
δk

]T
M̄

[
ξk
δk

]
≤ 0, (19)

where M̄ =

[
ATPA+ (2α− 1)P + I ATP

PA P − γ2I

]
.

Then, using the Schur complement, the notation R = P1L

and P =

[
P1 0
0 P2

]
, the inequality (16) can be derived from

the condition M̄ ≤ 0. Therefore, VH ≤ −2αVk for all ξk ̸=
0.

Given the LMI condition in Theorem 2, the design of ob-
server gain L can be achieved by convex optimization. In order
to minimize the H∞ norm (15), the following optimization
problem using the LMIs,

min
P,R

γ̄

subject to P > 0, γ̄ > 0, and (16),
(20)

where γ̄ = γ2.

V. VALIDATION

The proposed LMI-based NN observer was validated in
MATLAB/SIMULINK simulation. A permanent magnet SM
(PMSM) compressor was used in simulation whose specifi-
cations are listed in Table I. The PMSM was controlled by
PI controllers to track the current references. The PMSM
is regulated to operate at a constant speed of 1800 RPM.
The load torque is applied as a periodic input that varies
proportionally with the rotational angle. The rotational speed
dynamic system is as follows:

ω̇m = −Bm

Jm
ωm +

1

Jm
Te −

1

Jm
TL, (21)

where ωm is the rotational speed of the PMSM, Te is
the torque of the PMSM, and TL is the load torque of the
PMSM, respectively. However, uncertainty arises due to the



TABLE I
SPECIFICATIONS OF THE PMSM DRIVE

DC-link voltage (Vdc) 150 V
Sampling time (Ts) 100 µs
Number of pole pairs (P ) 4
Stator resistance (Rs) 1.1 Ω
d-axis Inductance (Ld) 8 mH
q-axis Inductance (Lq) 8 mH
Inertia (Jm) 4.44×10−4 kg·m2

Friction (Bm) 0.005 Nm·s/rad
Known inertia (Ĵm) 10−4 kg·m2

Known friction (B̂m) 0.008 Nm·s/rad

Fig. 2: Rotational speed of the PMSM compressor. (a) pro-
posed method, (b) method in [10], and (c) method in [11].

lack of exact knowledge of the system parameters. The system
parameters in (1) with Table I as follows:

xk = ωm, uk = T ∗
e ,

A = 0.9920, B = 1, C = 1, F = 1,
(22)

Fig. 3: Nonlinear uncertainty term. (a) proposed method, (b)
method in [10], and (c) method in [11].

where T ∗
e is the torque reference and f(xk) includes

the load torque, difference between the torque reference
and the torque of the PMSM, and parameter uncertainties
such as inertia and friction. A numerical reference generator
presented in [13] was used to convert a torque command
into the current references. To evaluate the performance of
the proposed method, it will be compared with the meth-
ods presented in [10] and [11]. The measurement noise is
nk ∼ N (0, 0.012). The parameters for the validation of the
proposed method were selected as follows: ẑk =

[
x̂k yk

]T
,

N =

[
0.0053 0

0 0.0053

]
, σ(zk) = tanh(zk) + 2, α = 1.5,

η = 0.7, and the observer gain is obtained by solving (20) as
L = 0.4386.

Figure 2 presents estimated the rotational speed of the
PMSM compressor, where (a) is the proposed method in this



Fig. 4: Comparison of RMSE values for state and nonlinearity
estimation results.

paper, (b) is the method in [10], and (c) is the method in [11].
The results in (a) and (c) indicate that the impact of the
measurement noise is reduced, while the result in (b) shows
similar estimation performance to the sensed rotational speed
of the PMSM compressor due to the measurement noise.

Figure 3 presents the lumped nonlinear term f(xk) in (22)
and the estimation results f(x̂k). Among the results, (c) is the
least affected by measurement noise; however, it exhibits the
slowest convergence to the real nonlinearity. In contrast, the
proposed method (a) demonstrates fast and accurate estimation
performance, despite the presence of noise, which does not
significantly affect the state estimation accuracy. In addition,
case (b) shows divergence result as t → ∞ due to the fast
periodic application of the load torque and the estimation error
remaining within a bounded region.

Figure 4 presents the comparison of root mean square error
(RMSE) values for state and nonlinearity estimation during
a 0.5 second simulation period. All values are normalized
by the maximum value of each component. The proposed
method demonstrates improved robustness to measurement
noise, leading to more accurate state estimation and enhanced
nonlinearity approximation. These results are attributed to the
proposed method, which combines a backpropagation-based
weight update to minimize the output error loss function to
track the measurement values with an H∞-based observer
gain L designed to suppress the influence of the measurement
noise and to be satisfied for all vertices. The results of all
methods yield lower RMSE values compared to the directly
sensed speed yk, demonstrating robustness against measure-
ment noise.

VI. CONCLUSION

This paper has presented an LMI-based neural network
observer for the estimation of both the system states and
nonlinear terms, with reduced sensitivity to measurement noise
and other uncertainties in the discrete-time domain. A design

method for the weight update rule based on the backpropa-
gation, along with the observer gain derived by solving the
LMI problem for all vertices is proposed. Furthermore, H∞
observer is proposed to account for NN approximation error
and measurement noise, aiming to minimize their effects. The
effectiveness of the proposed method is validated through
PMSM compressor simulation results. Future work will focus
on experimental validation, potential extension to MIMO
nonlinear systems, and the development of practical guidelines
for tuning observer parameters such as learning rate.
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