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Abstract—The stator flux linkages serve as a key to the
optimal control of synchronous machines (SMs). However, due to
their complex and nonlinear characteristics, accurately modeling
and identifying them online remains highly challenging. In this
regard, neural network-based learning strategies are considered
promising candidates for modeling the flux linkages, but their
application has so far been largely limited to offline training
of neural networks. Therefore, this study presents a physics-
informed online learning method for accurately modeling the flux
linkages of SMs. The proposed method enables online training
of a neural network to learn the physical laws governing the
flux linkages while adhering to the model’s inherent physical
constraints. The learning rules for updating the neural network
weights are formulated to satisfy the first-order optimality
conditions, and the proposed method can be employed as an
online flux linkage estimator. The effectiveness of the proposed
method is validated through simulation results conducted on
a 35 kW interior permanent magnet synchronous machine
(IPMSM) drive.

Index Terms—Physics-informed learning, stator flux linkages,
synchronous machines (SMs), online identification

I. INTRODUCTION

A. Motivation

The dynamic behavior of synchronous machines (SMs) is
described by ordinary differential equations (ODEs) repre-
senting the time derivatives of the stator flux linkages [1].
Therefore, accurately obtaining the stator flux linkages is
essential for achieving the optimal control of SMs, enabling
advanced current control [2], optimal feedforward control [3],
and optimization-based methods such as generalized model
predictive torque control (GMPTC) [4].

A straightforward approach to identifying the stator flux
linkages in SMs is to construct flux linkage maps through
experimental identification techniques, which are conducted
offline under steady-state conditions across the entire operating
range [5]. However, this strategy has several limitations: the
experimental identification process is both time-consuming
and costly, and the resulting maps cannot adapt to parameter
variations arising from abnormal conditions such as tem-
perature rise or demagnetization, as well as aging effects.
Therefore, online estimation of the stator flux linkages is
essential for SMs.
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B. Literature Review
Several studies have proposed online estimation approaches

for stator flux linkages. In [6], flux linkages are estimated by
integrating the voltage model (ODEs describing the SM in the
α-β reference frame) and compensating for DC offset errors
using a high-pass filter, but this approach distorts the low-
frequency response. Furthermore, [7] proposes a Gopinath-
style observer combining the voltage and current flux models
without considering cross-coupling effects, whereas [8] com-
pensates for these effects only under steady-state conditions
by using the integrator errors of the current controllers.

Recently, state-of-the-art state observer-based flux linkage
estimators have demonstrated remarkable performance. A dis-
turbance observer-based flux linkage estimator (DOBFLE) was
introduced in [9], which separates the flux linkages into linear
and nonlinear terms and estimates the nonlinear terms using a
disturbance observer. Meanwhile, [10] presents a time-domain
linear state observer for compensating integration errors in the
voltage model, in contrast to conventional frequency-domain
approaches. Although both approaches guarantee exponential
convergence in steady states, their transient estimation perfor-
mance deteriorates significantly when the nominal parameters
deviate from the true values.

Moreover, data-driven approaches using neural networks
(NNs) have been explored to model the stator flux linkages
[11], [12]. However, they encounter challenges in obtaining
true flux linkages for online training or are restricted to
learning under steady-state conditions, leading to suboptimal
performance.

C. Contributions
The literature review confirms the limitations of existing

approaches. To overcome the aforementioned challenges, this
study proposes a neural network (NN)-based online learning
approach for estimating the stator flux linkages. The key idea
is to model the stator flux linkages by a neural network and
approximate them through physics-informed online learning
under optimization constraints, thereby satisfying the first-
order optimality conditions [13]. The contributions of the
proposed method are as follows:

• The flux linkage model is represented by the NN and
identified online via physics-informed learning [14],
where the NN serves as the solution that satisfies the



underlying physical laws. To facilitate this learning,
the electrical dynamics of SMs, originally expressed as
ODEs, are reformulated into partial differential equations
(PDEs).

• The physics-informed online learning process is formu-
lated as a constrained optimization problem, which allows
physical constraints to be imposed on the flux linkage
during the learning process. This ensures accurate iden-
tification of the flux linkage model while simultaneously
learning its behavior.

• The learning rules, derived from solving the constrained
optimization problem, satisfy the first-order optimality
conditions at steady states.

II. PRELIMINARIES

A. SM Model

The electrical dynamics of SM in the d-q reference frame
is expressed as the following ODEs:
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where ψd
s and ψq

s represent the d- and q-axis stator flux
linkages, respectively; ids and iqs , and vds and vqs represent the
stator currents and voltages corresponding to the d- and q-axes,
respectively; Rs denotes the stator resistance; wr represents the
electrical rotor speed.

In this study, the following assumptions are considered for
the above ODEs:

• The stator currents (ids and iqs ) and the electrical rotor
speed (wr) are accurately measurable.

• The stator resistance (Rs) is regarded as known.
• The inverter nonlinearities and the iron losses (resulting

from eddy current and hysteresis effects) are assumed to
be negligible.

B. Interpreting ODEs in a PDE Framework

The stator flux linkages are generally modeled as nonlinear
functions of the stator currents (i.e., ψd
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Using the chain rule with respect to stator currents ids and iqs ,
the time derivatives of the flux linkages are given by
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where the partial derivatives are defined as the differential
inductances: Ldd

s and Lqq
s denote the d- and q-axis self differ-

ential inductances, respectively, while Ldq
s and Lqd

s represent
the corresponding mutual differential inductances [2].

Consequently, by substituting (2a) and (2b) into (1a) and
(1b), respectively, the ODEs (1) can be reformulated as the
following PDEs
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which are employed as governing equations for the physics-
informed online learning of the flux linkage model (see Section
III-A for more details).

C. Physical Constraints on Flux Linkage
According to the principle of magnetic energy conserva-

tion for all admissible stator currents, the self differential
inductances must always be positive [2]. More specifically,
the bound of these inductances is determined by the physical
properties of SMs, e.g.
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where Ldd
s and Lqq

s , and L
dd

s and L
qq

s represent the lower and
upper bounds of the self differential inductances, respectively.

III. PHYSICS-INFORMED ONLINE LEARNING OF FLUX
LINKAGE MODEL

This section presents a physics-informed online learning
method for approximating the solution of the PDEs (3) using
a neural network (NN). First, the NN architecture for online
learning is introduced in Section III-A, and a constrained
optimization problem for NN learning is formulated in Sec-
tion III-B. Subsequently, this optimization problem is solved
in Section III-C using the proposed learning rules, yielding so-
lutions that satisfy the Karush-Kuhn-Tucker (KKT) conditions
(i.e., the first-order optimality conditions).

A. NN Architecture
For online learning, a typical three-layer NN structure (i.e.,

input layer, hidden layer and output layer with weights)
is employed as the neural network architecture, which can
approximate the nonlinear behavior between the stator flux
linkages (ψd

s and ψq
s ) and the stator currents (ids and iqs ).

Invoking this relationship leads to the following expressions
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where x :=
(
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q
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)⊤ ∈ R2 denotes the input vector; wd ∈ Rn

and wq ∈ Rm represent the d- and q-axis weight vectors,
respectively; σd ∈ Rn and σq ∈ Rm are nonlinear activation
functions for the d- and q-axes; and ϵds and ϵqs are the
approximation errors bounded by sufficiently small positive
values. Accordingly, the data-driven approximation of the flux
linkages is expressed as
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s (ŵd,x) = ŵ⊤
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where ŵd ∈ Rn and ŵq ∈ Rm are the estimated output layer
weight vectors for the d- and q-axis flux linkages, respectively,
which are updated online.

In a compact space, if the true flux linkage in (5) is at least
piecewise continuous, activation functions such as the sigmoid
and hyperbolic tangent functions have universal approximation
properties almost everywhere (except on a set of measure
zero) [15]. The number of these activation functions acts as
a hyperparameter tuned by a designer. Therefore, to construct
the optimal learning model, the ideal functions proposed in
[16], which inherently represent the behavior of the flux
linkages, are utilized as activation functions, e.g.
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where a0, . . ., a4 and b0, . . ., b4 are the design parameters.
Training the NN is generally performed by updating its

weights through regression or backpropagation to minimize the
error between the network’s forward prediction and the actual
outputs. However, it is challenging to directly use the flux
linkages as outputs, as they cannot be measured in the absence
of a flux sensor. Instead, the PDEs (3) can be utilized for
NN learning by expressing them as residuals of the governing
equations, and updating the network weights such that these
residuals approach zero. The PDE residuals are expressed as
follows:
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with the estimated (denoted byˆ ) differential inductances
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= ŵ⊤

d

∂σd(x)

∂ids
, (9a)

L̂dq
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= ŵ⊤

q

∂σq(x)

∂ids
, (9c)

L̂qq
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which are obtained by analytically differentiating the activation
functions in (7) with respect to the stator currents, and then
substituting the results into (9).

In addition to the partial derivatives derived in (9), the
evaluation of the PDE residuals (8) also requires the time
derivatives of the stator currents. These time derivatives are
approximated using the Euler method with a sampling time
Ts as follows:

dids
dt

≈ ids [k]− ids [k − 1]

Ts
,

diqs
dt

≈ iqs [k]− iqs [k − 1]

Ts
,

where k denotes the current time step. Consequently, the
resulting PDE residuals are utilized to update the output layer

Fig. 1: The proposed NN architecture for the physics-informed
online learning.

weights for learning the NN. The architecture of the proposed
NN is illustrated in Fig. 1.

Remark 1. This study focuses on approximating the solutions
of the PDEs (3) by updating only the output layer weights of
a single-hidden-layer neural network. Owing to its simplicity,
this structure is well suited for use as a flux linkage estimator.
However, the proposed method has the potential to be extended
to a multi-layer neural networks, enabling online learning
of the global behavior of the flux linkage using meaningful
datasets collected under various operating conditions.

B. Problem Formulation

Considering the physical constraints of SM, the optimization
problem is formulated as

min
ŵ
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2
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where J ∈ R is the objective function, e :=
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is the PDE residual vector, and ŵ :=
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denotes the estimated weight vector, which is the optimization
variable in (10). The objective function (10a) is employed to
optimize the weights via simultaneous approximation of the
flux linkages and inductances using the PDE residuals (8).
The inequality constraints (cinj ≤ 0, j ∈ I = {1, 2, 3, 4}) in
(10b)–(10e) are designed considering the physical properties
of SMs, as discussed in Section II-C.

C. Learning Rules

The solutions to the constrained optimization problem (10)
are obtained by satisfying the optimality conditions of the



Lagrangian function, which is defined as follows:

L(e, ŵ,λin) := J(e; ŵ) +
∑
j∈I

λinj c
in
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where λinj ∈ R, ∀j ∈ I is the Lagrange multiplier for the
inequality constraint cinj , and A := {j ∈ I | cinj ≥ 0} is
the active set.

To solve the optimization problem, the Lagrangian function
(11) with respect to two variables (i.e., ŵ and λin), the
problem can be reformulated as a primal-dual problem

min
ŵ
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L(e, ŵ,λin). (12)

The learning rules for satisfying the KKT optimality con-
ditions of (12) are derived as
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where α and βin
j denote the learning rate (positive constants)

for the weight vectors and Lagrangian multipliers, respectively.
Under the learning rules (13), when the inequality constraint

cinj is inactive (i.e., cinj < 0), the Lagrange multiplier λinj
gradually decreases and converges to zero, while the weights
are updated in the direction of the gradient descent to minimize
the Lagrangian function. If the inequality constraint becomes
active (i.e., cinj ≥ 0), λinj increases until cinj reaches the equality
boundary (i.e., cinj = 0), after which the update follows the
same behavior as in the inactive case. At the stationary point,
the KKT optimality conditions are satisfied, i.e., ∂L

∂ŵ = 0,
cinj ≤ 0, λinj ≥ 0, and λinj c

in
j = 0, where ˙̂w → 0, λ̇inj → 0 at

steady state.

Remark 2. The proposed leaning rules (13) guarantee only
the first-order necessary conditions for optimality; therefore,
the solution to the problem (10) may correspond to a local
minimum, a local maximum, or a saddle point. However, con-
vergence to a local minimum can be ensured by appropriately
selecting the activation functions and imposing constraints
during NN learning.

IV. SIMULATION VALIDATION

A. Simulation Setup

Simulation validation was conducted using the MAT-
LAB/Simulink R2024a to verify the feasibility of the pro-
posed physics-informed online learning method. The simu-
lation environment was adapted from the ‘Three-phase
PMSM Traction Drive’ example, incorporating the pro-
posed method within the control framework. The specifications
of the 35 kW IPMSM model used in this environment are
listed in Table I, and the corresponding flux linkage maps,
constructed using 2-D lookup tables (LUTs) for the differential
inductances (Ldd

s and Lqq
s ) and the permanent magnet flux

TABLE I: Specifications for the IPMSM

Parameter Value
Rated mech. power 35 kW
Rated mech. speed 2000 RPM
Rated mech. torque 180 Nm
Max. stator voltage (vs) 160 V
Max. stator current (is) 350 A
Pole pairs (P) 8
Stator resistance (Rs) 10.7 mΩ

(a) (b)

Fig. 2: Stator flux linkage maps of the IPMSM corresponding to the d-axis
(a) and q-axis (b).

linkage (ψpm), are shown in Fig. 2. The IPMSM drive was
regulated according to a maximum torque per ampere (MTPA)
trajectory obtained through the numerical algorithm described
in [17], and subsequently, current references derived from the
desired torque were tracked via a PI current controller with
feedforward compensation.

The proposed method enables online learning of the flux
linkage model and can be directly employed as a flux link-
age estimator itself. For the comparison of flux estimation
performance, the proposed method was compared with the
true flux linkage model and the state-of-the-art disturbance
observer-based flux linkage estimator (DOBFLE) [9] under
torque reference variations between 0 and 180 Nm with a
50 Hz bandwidth at 500 RPM mechanical speed. The stator
voltage used for flux estimation was generated by a current
controller with a bandwidth of 200 Hz and a control sampling
time Ts = 50 µs. The simulation settings for this comparative
study are described in detail as follows:

1) Actual Flux Linkage Model: A 2-D data model based
on LUTs extracted from the FEM-parameterized IPMSM
was used as the reference model.

2) DOBFLE: This method separates the flux linkage into lin-
ear terms and nonlinear disturbance terms, defines them
as state variables, and designs a state observer to estimate
these states (see [9] for details). The observer gain matrix
F , associated with the state observer, was designed by
formulating a linear matrix inequality (LMI) problem to
place the eigenvalues of the observer’s closed-loop sys-
tem at a bandwidth of 100 Hz (i.e., 628 rad/s), using the

nominal inductance matrix Ls,0 =

[
0.25 0

0 0.32

]
mH. The

problem was solved using YALMIP with the MOSEK
solver, and the resulting gain matrix was given by F =



[
0.1377 0.4688 −0.1609 0.4644

−0.5726 0.1703 −0.5672 −0.1965

]⊤
.

3) Proposed Method (PM): For learning the NN, the number
of neurons used in the activation functions was configured
as n = 5 and m = 5, and the parameters in (7) were set to
a0 = 120, a1 = 1, a2 = 6.9 ·10−6, a3 = 2.6 ·10−3, a4 =
1, and b0 = 0.5, b1 = 1, b2 = 6.9 ·10−6, b3 = 2.6 ·10−3,
b4 = 1. The weights were updated with the sampling
time Ts, and the learning rates for the weights and the
Lagrange multipliers were set as α = 50 and βin

j∈I =
1.5 · 106, respectively. The upper and lower bounds for
Ldd
s and Lqq

s were selected as L
dd

s = 3.0 · 10−4, Ldd
s =

2.5 · 10−4, L
qq

s = 4.5 · 10−4, and Lqq
s = 2.5 · 10−4,

respectively.

B. Simulation Results

Figure 3 shows the simulation results of the stator flux
linkages under varying torque command. As shown in Fig.
3a, the flux estimation performance of the PM was compared
with that of the actual flux linkage model and the DOBFLE.
In Fig. 3b, the self differential inductance estimates are shown
with the Lagrange multipliers representing the corresponding
constraints.

During the identification sequence in Fig. 3a, the torque
command T cmd

e increased to 180 Nm with step signals from
t = 0.05 s to t = 0.25 s, and then decreased to 0 Nm at
t = 0.55 s. In this scenario, the d-axis flux linkage ψd

s varied
from 0.018 Wb to 0.044 Wb, while the q-axis flux linkage
ψq
s changed from 0.0 Wb to 0.08 Wb. Both the PM and

the DOBFLE exhibited flux linkage estimation errors that
converged to near zero in steady states within the bandwidth of
the torque reference (i.e., 50 Hz). However, in the DOBFLE,
the observer gain matrix was designed based on constant
inductance values, which could not account for changes in
inductance under varying torque conditions. As a result, esti-
mation errors occurred throughout the transient states due to
the deviation between the nominal and actual inductances, with
particularly large errors observed in the d-axis flux linkage
from t = 0.05 s to t = 0.07 s.

In contrast, the PM simultaneously learns both the flux
linkages and inductances using the NN, subject to the imposed
physical constraints introduced in problem (10). As shown in
Fig. 3b, the d- and q-axis inductances are constrained within
the ranges of 2.5 · 10−4 H to 3.0 · 10−4 H and 2.5 · 10−4 H
to 4.5 · 10−4 H, respectively. The inequality constraints were
active in the d-axis over the intervals t = 0.05 s to 0.052 s,
t = 0.252 s to 0.353 s, and t = 0.556 s to 0.559 s, and in the
q-axis over t = 0.57 s to 0.6 s, during which the correspond-
ing Lagrange multipliers (λin1 , λin2 , and λin3 ) increased. Af-
ter the constraints became inactive, the Lagrange multipliers
decreased and eventually converged to zero. Under these
constraints, the optimization was performed according to the
proposed learning rules in (13), satisfying the KKT optimality
conditions, and as a result, suboptimal solutions were obtained
while the flux linkages and inductances were progressively
approximated. Finally, in Fig. 3a, the maximum flux linkage

(a)

(b)

Fig. 3: Simulation results of the proposed method (PM) under
a varying torque command at a speed of 500 RPM. (a) Stator
flux linkage estimates from the PM and the DOBFLE in the
d–q reference frame. (b) Differential inductance estimates and
the corresponding Lagrange multipliers from the PM on a
logarithmic scale.

estimation errors in the PM are 23.66 · 10−4 Wb (≤ 5.41%)
in the d-axis and 31.31 · 10−4 Wb (≤ 3.85%) in the q-
axis. In comparison, the DOBFLE shows estimation errors of



53.23·10−4 Wb (≤ 12.19%) in the d-axis and 45.97·10−4 Wb
(≤ 6.43%) in the q-axis.

This result demonstrates that the PM can achieve higher
flux estimation accuracy than the DOBFLE, especially during
transient states, by incorporating the physics of the SM,
applying physical constraints on the inductances, and solving
the corresponding constrained optimization problem through
the weight updates of the NN.

V. CONCLUSION

A physics-informed online learning method for flux linkage
modeling has been proposed. This method can be directly
applied as a flux linkage estimator, utilizing a single-hidden-
layer neural network with adaptable output layer weights.
These weights are updated by minimizing the residuals of the
governing PDEs while satisfying the KKT optimality condi-
tions of a constrained optimization problem, which incorpo-
rates the physical constraints of SMs. This framework enables
simultaneous learning of both flux linkages and differential
inductances. The effectiveness of the proposed method was
verified through simulations by comparing its flux estimation
performance against that of a state-of-the-art flux estimator,
DOBFLE, on a 35 kW IPMSM drive.

In future research, the NN architecture will be extended to
a multi-layer structure to capture the global behavior of flux
linkages using meaningful datasets collected across various
operating conditions. Furthermore, the proposed approach will
be validated experimentally in a laboratory environment.
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