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Abstract— In this paper, a neuro–adaptive controller with
weight norm constraints is proposed for uncertain Eu-
ler–Lagrange systems. The boundedness of the weights in
the neuro–adaptive controller design is important to prevent
excessively large control inputs and system instability. To ensure
the boundedness of the weights, the weight norm constraints are
imposed as inequality constraints in the weight adaptation. The
adaptation law is derived based on the constrained optimization
method. The stability of the proposed controller is analyzed in
the sense of Lyapunov, ensuring the boundedness of the tracking
error and weight estimation. For the comparative study, two
benchmark controllers and the proposed controller were evalu-
ated through a numerical simulation of a two-link manipulator
system and compared in terms of tracking performance and
parameter dependency. The comparative study verified that the
proposed controller has better tracking performance and lower
parameter dependency.

NOTATION

In this study, the following notation is used:
• ⊗ denotes the Kronecker product [1, Definition 7.1.2].
• x = [xi]i∈{1,··· ,n} ∈ Rn denotes a vector.
• rowi(A) denotes the ith row of the matrix A ∈ Rn×m.
• vec(A) := [row1(A

⊤), · · · , rowm(A⊤)]⊤ for A ∈
Rn×m.

• λmin(A) denotes the minimum eigenvalue of A ∈
Rn×n.

• In denotes the n×n identity matrix and 0n×m denotes
the n×m zero matrix.

I. INTRODUCTION

In various practical applications, Euler–Lagrange systems
generally have uncertainties due to their unknown and un-
modeled dynamics. These uncertainties degrade the control
performance index. Furthermore, if uncertainties dominate
the system, they may lead to instability. By compensating
for these uncertainties, adaptive control methods have been
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widely used to attenuate the effects of system uncertainties
[2], [3]. Most conventional adaptive control methods focus
on estimating unknown parameters in systems or controllers.

More recently, neuro–adaptive control approaches have
been developed using neural networks (NNs) to approximate
unknown system dynamics [4]. It generally uses the approxi-
mation capability of NNs with any arbitrary sigmoidal activa-
tion function [5], which can approximate sufficiently smooth
functions with minimum approximation error through ideal
weights in a compact set. This property allows the NNs to be
synthesized in the controllers to approximate the unknown
dynamics. Various architectures of NNs have been proposed
for neuro–adaptive control, such as single-hidden-layer NN
(SHLNN) [6], [7], radial basis function NN (RBFNN) [8],
[9], and deep NN (DNN) [10]. The literature has shown
that NNs can improve the system’s performance index and
stability by approximating the unknown dynamics.

One of the common issues in using NNs as control
components is that the outputs of NNs are not predictable.
This is because the input–output relationships of the NNs are
not interpretable (i.e., the NNs are usually called black boxes
[11], [12]). This issue should be addressed for safety because
the control input may reach the actuator’s physical limitations
and result in system collapse, due to the unpredictable control
components from NNs.

Most studies modify their adaptation laws to ensure the
boundedness of the weights, noting that the boundedness
of the NNs’ output can be ensured by the boundedness of
the weights. In [9], [10], the projection operator is utilized
to prevent weight divergence by projecting the adaptation
direction on the convex set of weights. However, in the
literature, the convex set is usually selected to be as large as
possible since there is no information on the ideal weights’
norm. Hence, the projection operator guarantees only the
boundedness of the weights without theoretical optimality.
In addition, the σ-modification [8] and the ϵ-modification
[6], [7] are widely used to regulate the magnitude of the
weights by adding a stabilizing function in the adaptation
law, thereby making the invariance set of the estimation
error of the weights. The existing methods have shown their
effectiveness in ensuring the boundedness of the weights
via numerical simulations. However, they lack theoretical
analysis regarding the optimality of the adapted weights.

Similarly, approaches that regulate the magnitude of the
weights have also been introduced in the deep learning
literature. One of the approaches is L2-regularization, which
adds the squared magnitudes of the weights to the objective
function [13], [14]. Then, the adaptation process attempts to
reduce the magnitude of the weights, not only the original ob-



jective function. By regulating the magnitude of the weights,
the stability of the adaptation process can be enhanced, and
overfitting can be prevented. However, L2-regularization also
involves a trade-off between adaptation stability and the
optimality of the weights.

For the theoretical analysis of weight optimality with
boundedness, the constrained optimization method [15] can
be utilized. It provides the theoretical definition of optimality
and the numerical methodology to solve the constrained
optimization problem. To the best of the authors’ knowledge,
no prior work has utilized the constrained optimization
method for the real-time weight adaptation of neuro–adaptive
control satisfying weight boundedness. Therefore, the con-
strained optimization method could play a pivotal role in
the neuro–adaptive control design addressing the weight
boundedness.

The main contributions of this study are as follows:

• The neuro–adaptive control problem is reformulated
into a constrained optimization problem by treating the
satisfaction of the weight boundedness as inequality
constraints.

• The adaptation law is derived based on the constrained
optimization method to minimize the objective function
while satisfying the weight norm constraints.

• The stability of the adaptation laws is analyzed via Lya-
punov stability analysis, which ensures the boundedness
of the tracking error and weight estimation.

The remainder of this paper is organized as follows:
Section II presents the target-constrained system and control
objective. Section III introduces the proposed controller and
the adaptation law. Section IV examines the stability of the
proposed controller. A comparative study of the three se-
lected controllers, including the proposed controller through
numerical simulation, is reported in Section V. Finally,
Section VI concludes the paper by presenting future work.

II. PROBLEM FORMULATION

A. Model Dynamics and Control Objective

Consider an uncertain Euler–Lagrange system modeled as

Mq̈ + V mq̇ +G+ F = τ , (1)

where q ∈ Rn and τ ∈ Rn denote the generalized coordinate
and the control input, respectively; M := M(q) ∈ Rn×n,
V m := V m(q, q̇) ∈ Rn×n, and G := G(q) ∈ Rn denote
the unknown system function matrices; and F := F (q̇) ∈
Rn denotes the external force. Using the user-designed
matrices M̂ > 0, V̂ m and Ĝ, (1) can be represented as

M̂q̈ + V̂ mq̇ + Ĝ = τ + f(q, q̇, q̈), (2)

where f(q, q̇, q̈) := −(M − M̂)q̈− (V m − V̂ m)q̇− (G−
Ĝ)− F denotes the residual unknown term.

Hence, the objective of the control design is to make q
track the continuously differentiable desired trajectory qd :=
qd(t) : R → Rn under the unknown terms f := f(q, q̇, q̈).

III. CONTROL LAW DEVELOPMENT

In this section, the neuro–adaptive controller is developed.
Section III-A presents the details of the neuro–adaptive
controller and the NN model. The adaptation law based on
the constrained optimization method is derived in Section
III-B by formulating a constrained optimization problem.

A. Neuro–adaptive Control Design
The backstepping control-based approach is utilized to

generate a reference signal z∗ := −kqq̃ + q̇d for z := q̇,
where q̃ := q − qd and kq ∈ R>0. The desired stabilizing
controller can be designed as follows:

τ ∗ = −M̂ · (kzz̃)+(−M̂q̃+ V̂ mz+Ĝ−f +M̂ż∗), (3)

where z̃ := z − z∗ and kz ∈ R>0. Note that the desired
controller cannot be realized because of f .

To approximate the desired controller, an NN is utilized.
Even though DNNs have a higher approximation capability
than SHLNNs [16], here, an SHLNN is utilized for simplicity
and low computational complexity. The NN with a single
hidden layer is represented as

Φ(qn;θ) := W⊤
1 ϕ(W

⊤
0 qn),

where qn ∈ Rl0+1 denotes the NN input vector, W i ∈
R(li+1)×li+1 , ∀i ∈ {0, 1} denotes the weight matrix of
the ith layer and ϕ : Rl1 → Rl1+1 denotes the activation
function layer. The activation function layer consists of
an elementwise nonlinear function σ(·) and an augmented
1 to combine the bias terms in the weight matrix (i.e.,
ϕ(x) =

(
σ(x(1)), · · · , σ(x(l1)), 1

)⊤
). For further simplicity,

let θi := vec(W i) ∈ RΞi , ∀i ∈ {0, 1} denotes the
vectorized weights and θ := (θ⊤

1 ,θ
⊤
0 )

⊤ ∈ RΞ denotes the
total weight vector, where Ξi := (li + 1) · li+1, ∀i ∈ {0, 1}
and Ξ := Ξ0+Ξ1 denote the number of each layer and total
weights, respectively.

Using this NN, the desired controller τ ∗ can be ap-
proximated by the ideal weight vector θ∗ for a compact
subset ΩNN ∈ Rl0+1 to ϵ accuracy such that supqn∈ΩNN

∥Φ(qn;θ
∗) − τ ∗∥ = ϵ < ∞ [5]. The ideal weight vector

θ∗ is typically assumed to be bounded. Then, using the esti-
mated weight vector θ̂ := (θ̂

⊤
1 , θ̂

⊤
0 )

⊤ of θ∗ := (θ∗
1
⊤
,θ∗

0
⊤
)⊤

and bounded approximation error ϵ ∈ R2, the approximated
desired controller τ ∗ ≈ −Φ(qn;θ

∗)−ϵ can be estimated as
follows:

τ := −Φ(qn; θ̂). (4)

For further sections, let Φ∗ := Φ(qn;θ
∗) and ϕ∗ :=

ϕ(W ∗
0
⊤
qn), and let Φ̂ := Φ(qn; θ̂), ϕ̂ := ϕ(Ŵ

⊤
0 qn) and

ϕ̂
′
:= ∂ϕ̂

∂(Ŵ
⊤
0 qn)

.
Using (2), (3), and (4), the error dynamics can be ob-

tained as the first-order system of augmented error ξ :=
(q̃⊤, z̃⊤)⊤ ∈ R2n as follows:

d
dtξ = Aξξ +Bξ(Φ

∗ − Φ̂+ ϵ),

and

Aξ :=

[
−kqIn In

−In −kzIn

]
, Bξ :=

[
0n×n

M̂
−1

]
.



B. Adaptation Law Derivation

As discussed in Section I, the boundedness of the weights
should be considered to prevent excessively large control
inputs and system instability. For the boundedness of the
weights, weight norm constraints are imposed on the adap-
tation process such that cθi := cθi(θ̂i) = ∥θ̂i∥2 − θ̄2i , ∀i ∈
{0, 1}. The control problem can be reformulated into a
constrained optimization problem as follows:

minθ̂ J(ξ; θ̂) := 1
2ξ

⊤Λξ,

subject to cj ≤ 0, j ∈ I := {θ0, θ1},

where Λ = Λ⊤ > 0 denotes the weighting matrix. In
this optimization problem, ξ is considered a predefined
parameter. The corresponding Lagrangian function is defined
as

L(ξ, θ̂, [λj ]j∈I) := J(ξ; θ̂) +
∑

j∈I λjcj(θ̂).

To solve the dual problem minθ̂ max[λj ]j∈I L(ξ, θ̂, [λj ]j∈I ,
the adaptation law is derived as follows:

d
dt θ̂ = −α∂L

∂θ̂
= −α

(
∂J

∂θ̂
+
∑

j∈I λj
∂cj

∂θ̂

)
, (5a)

d
dtλj = βj

∂L
∂λj

= βjcj , ∀j ∈ I, (5b)

λj = max(λj , 0), (5c)

where arguments of L are suppressed for brevity, and α ∈
R>0 and βj ∈ R>0 denote the adaptation gain and the update
rate for each Lagrange multiplier, respectively.

Using the chain rule, the gradient of the objective func-
tion with respect to the weights (i.e., ∂J

∂θ̂
) in (5a) can be

represented as ∂J

∂θ̂
= ∂ξ

∂θ̂

⊤
Λξ. The calculation of ∂J

∂θ̂
is not

straightforward because of the dynamics of ξ. Using the
forward sensitivity method presented in [17], the sensitivity
equation can be obtained as follows:

d
dtη = Aξη −Bξ

∂Φ̂

∂θ̂
, (6)

where η := ∂ξ

∂θ̂
∈ R2n×Ξ denotes the sensitivity of the

weights to the augmented error. The initial value of η is
zero since the initial ξ is independent of the weights. By
decomposing for each layer, the dynamics of ηi :=

∂ξ

∂θ̂ i
∈

R2n×Ξi can be represented as

d
dtη=

[
η1 η0

]′
=Aξ[η1 η0]−Bξ[(I l2⊗ϕ̂

⊤
) Ŵ

⊤
1 ϕ̂

′
(I l1 ⊗ qn

⊤)].

The calculation of ∂Φ̂

∂θ̂
is introduced in [10]. In conclusion,

the gradient of the objective with respect to the weights can
be obtained as ∂J

∂θ̂
= η⊤Λξ by simulating the sensitivity

equation (6).
On the other hand, the gradient of the constraints with

respect to the weights can be represented as follows:

∂cθ0
∂θ̂

=

[
0Ξ1×1

2θ̂0

]
,

∂cθ1
∂θ̂

=

[
2θ̂1

0Ξ0×1

]
.

IV. STABILITY ANALYSIS

The following theorem proves the boundedness of the
tracking error and the weight estimation of the weights.

Theorem 1. For the dynamical system in (1), the proposed
controller (4) and the adaptation law (5) ensure the bound-
edness of the tracking error ξ and the weight estimation θ̂,
provided that the control gains kq and kz satisfy (8).

Proof. The boundedness is proven from the last layer to the
first layer.

Step 1: Boundedness of θ̂1,η1, ξ

Without loss of generality, assume that all the constraints
are violated. Then, according to (5b) and (5c), all Lagrange
multipliers are nonzero.

The dynamics of ξ can be represented as

d
dtξ = Aξξ +Bξ(−Ŵ

⊤
1 ϕ̂+w(t)),

where w(t) := W ∗
1
⊤
ϕ∗+ϵ is a lumped residual term, which

is bounded as ∥w(t)∥ ≤ w̄ < 0 since ∥θ∗
1∥, ∥ϕ

∗∥ and ∥ϵ∥
are bounded. The dynamics of η1 and θ̂1 are represented as

d
dtη1 =Aξη1 −Bξ(I l2 ⊗ ϕ̂

⊤
),

d
dt θ̂1 =− α(η⊤

1 Λξ + 2λθ1 θ̂1).

According to [18, Chap. 4 T. 1.9], the boundedness of η1

can be obtained since Aξ is stable and the residual term

∥−Bξ(I l2 ⊗ ϕ̂
⊤
)∥ is bounded.

Define the Lyapunov function V1 := 1
2ξ

⊤Pξ + 1
2α θ̂

⊤
1 θ̂1,

with the Lyapunov equation A⊤
ξ P + PAξ = −Q, where

Aξ < 0,P = P⊤ > 0, and Q > 0. Using a propo-

sition Ŵ
⊤
1 ϕ̂ = vec(Ŵ

⊤
1 ϕ̂) = vec(ϕ̂

⊤
Ŵ 1) = (I l2 ⊗

ϕ̂
⊤
) vec(Ŵ 1) = (I l2 ⊗ ϕ̂

⊤
)θ̂1 [1, Proposition (7.1.9)], the

time derivative of V1 is

d
dtV1=

1
2ξ

⊤(A⊤
ξ P + PAξ)ξ+ξ⊤P (−BξŴ

⊤
1 ϕ̂+Bξw(t))

− θ̂
⊤
1(η

⊤
1 Λξ + 2λθ1 θ̂1)

=− 1
2ξ

⊤Qξ − ξ⊤PBξ(I l2 ⊗ ϕ̂
⊤
)θ̂1 + ξ⊤∆

− θ̂
⊤
1 η

⊤
1 Λξ − 2λθ1 θ̂

⊤
1 θ̂1

≤− 1
2λmin(Q)∥ξ∥2 + ∆̄∥ξ∥+ M̄∥ξ∥∥θ̂1∥

− 2λθ1∥θ̂1∥2

≤(− 1
2λmin(Q) + M̄

2 )∥ξ∥2 + ∆̄∥ξ∥
+ (−2λθ1 +

M̄
2 )∥θ̃1∥2,

(7)
where ∆ := PBξw(t) and M := −PBξ(I l2⊗ϕ̂

⊤
)−Λη1

are bounded such that ∥∆∥ ≤ ∆̄ < ∞ and ∥M∥F ≤ M̄ <
∞, respectively.

By defining P = In, the eigenvalues of Q = −A⊤
ξ −Aξ

are 2kq and 2kz , since Aξ is a skew-symmetric matrix except
for the diagonal entries. According to (7), if kq and kz are
provided that

min(kq, kz) >
M̄
2 , (8)



Fig. 1: Two-link manipulator model.

and if λθ1 is increased sufficiently large such that 2λθ1 > M̄
2 ,

due to the violation of cθ1 , the tracking error is bounded in

Θξ :=
{
ξ | ∥ξ∥ ≤ 2∆̄

λmin(Q)−M̄

}
,

and the weight estimation θ̂1 is bounded in

Θθ1 :=
{
θ̂1 | ∥θ̂1∥ ≤ θ̄1

}
.

The Lagrange multiplier λθ1 is also bounded since the λθ1

update stops once θ̂1 approaches the compact set Θθ1 ,
satisfying the constraint cθ1 .

Step 2: Boundedness of θ̂0,η0

The dynamics of η0 and θ̂0 are represented as

d
dtη0 =Aξη0 −BξŴ

⊤
1 ϕ̂

′
(I l1 ⊗ qn

⊤),

d
dt θ̂0 =− α(η⊤

0 Λξ + 2λθ0 θ̂0).

According to [18, Chap. 4 T. 1.9], η0 is bounded since Aξ is

a stable matrix and ∥−BξŴ
⊤
1 ϕ̂

′
(I l1 ⊗ qn

⊤)∥ is bounded.
To obtain the invariance set of θ̂0, taking the time derivative
of the Lyapunov function V0 = 1

2α θ̂
⊤
0 θ̂0 yields:

d
dtV0 =− θ̂

⊤
0 (η0Λξ + 2λθ0 θ̂0)

≤∥θ̂0∥∥η0Λξ∥ − 2λθ0 θ̂
⊤
0 θ̂0,

≤− 2λθ0∥θ̂0∥2 + ∥η0Λξ∥∥θ̂0∥.

Then, the invariance set can be represented as Θθ0 := {θ̂0 |
∥θ̂0∥ ≤ ∥η0Λξ∥

2λθ0
}. If λθ0 is increased sufficiently large due to

the violation of cθ0 , the invariance set Θθ0 converges to {θ̂0 |
∥θ̂0∥ ≤ θ̄0} until the constraint cθ0 is satisfied. Therefore,
the Lagrange multiplier λθ0 is also bounded.

V. SIMULATIONS

A. Setup

The two-link manipulator model in [19] is employed for
the simulation demonstration as described in Fig. 1. In the
system, the parameters qp, qdp, τp,mp, lp, lcp, bp and fcp de-
note the joint angle, desired joint angle, torque, mass, length,

TABLE I: System model parameters.

Symbol Description Link 1 Link 2

mp Mass of pth link 23.902 (kg) 3.88 (kg)

lp Length of pth link 0.45 (m) 0.45 (m)

lcp COM of pth link 0.091 (m) 0.048 (m)

bp Viscous coef. of pth link 2.288 (Nms) 0.172 (Nms)

fcp Friction coef. of pth link 7.17 (Nm) 1.734 (Nm)

center of mass, viscous coefficient, and friction coefficient,
respectively, for link p ∈ {1, 2}. The values of the system
parameters are given in Table I. The reference signal of
q = [q1, q2]

⊤ is defined as follows:

qd =

[
qd1
qd2

]
=

[
+cos(π2 t) + 1
− cos(π2 t)− 1

]
.

For the comparative study, three controllers were selected:
the neuro–adaptive controller with L2-regularization (NAC-
L2) and with ϵ-modification (NAC-eMod), and the proposed
controller with constrained optimization (NAC-CO). The
performances of the selected controllers are compared based
on the tracking performances and the dependencies of the
parameters (i.e., L2 coefficient λ, ϵ-modification coefficient
ρ, and βj of NAC-L2, NAC-eMod, and NAC-CO, respec-
tively). The square root of the integrated squared error (ISE)

(i.e.,
√∫ T

0
∥ξ∥2 dt, where T denotes a simulation termination

time) is utilized to evaluate the tracking performance. The
parameter dependencies of the controllers were examined via
various values of the parameters. The values ranged from
0.001 to 1 across 10 samples.

The control laws of all three controllers were the same
as those defined in (4). The adaptation law of NAC-L2 is
derived by adding the squared weight term 1

2λθ̂
⊤
θ̂ to the

objective function such that JL2
:= J + 1

2λθ̂
⊤
θ̂, where λ ∈

R>0. The adaptation law obtained via the gradient descent
method is subsequently adjusted by adding a stabilizing term
−αλθ̂ as follows:

d
dt θ̂ =

∂JL2

∂θ̂
= −α

(
∂J

∂θ̂
+ λθ̂

)
.

Note that this adaptation law derived based on L2-
regularization method in deep learning is inherently the same
as the σ-modification in adaptive control theory, which adds
the term −ασθ̂, where σ ∈ R>0. For NAC-eMod, similar
to the σ-modification, the stabilizing function −αρ∥z̃∥θ̂ is
added to the adaptation law as follows:

d
dt θ̂ = −α

(
∂J

∂θ̂
+ ρ∥z̃∥θ̂

)
,

where ρ ∈ R>0. By ∥z̃∥, the stabilizing function proportion-
ally increases as the tracking error z̃ increases. Therefore,
the adaptation attempts to reduce the tracking error mainly
without the effect of the stabilizing function if the tracking
error is sufficiently regulated. The adaptation law of NAC-
CO is presented in (5). Owing to the stabilizing functions,
the weights of NAC-L2 and NAC-eMod are biased since the
stabilizing functions drive the weights toward the origin.



Fig. 2: Box-and-Whisker plot of the square root of the
tracking ISEs of NAC-L2, NAC-eMod, and NAC-CO across
various parameter values.

TABLE II: Quantitative comparison of square root of track-
ing ISE.

NAC-L2 NAC-eMod NAC-CO (proposed)

Maximum 11.1753×10−3 0.5603×10−3 0.3439×10−3

Median 0.5898×10−3 0.5519×10−3 0.3240×10−3

Minimum 0.5434×10−3 0.5434×10−3 0.3235×10−3

All controllers had the same control parameters except
their crucial parameters (i.e., λ, ρ and βj) as kq = 1.1,
kz = 10, M̂ = I2 and Λ = diag([5, 1, 15, 15]). The
parameters of the NNs were set to l0 = 2, l1 = 16, l2 = 2,
and α = 103, and the same random seed was applied for
weight initialization. The validity of the selected number
of nodes was demonstrated through experiments. The NN
input vector was set to the desired trajectory qd, with the
augmented 1 to incorporate the bias term in the weight matrix
such that qn = (q⊤

d , 1)
⊤. For NAC-CO, the parameters of

the weight norm constraints were set as θ̄0 = 10 and θ̄1 = 20.
The sampling time of the simulation and the simulation
termination time were set to Ts = 100µs and T = 10 s,
respectively.

B. Results

As shown in Fig. 2, the maximum square root of the
tracking ISE of NAC-CO is smaller than the minimum square
root of the tracking ISEs of NAC-L2 and NAC-eMod for
all variations in the parameters. This is because NAC-L2
and NAC-eMod bias the weights to the origin due to the
presence of stabilizing functions. A quantitative comparison
of the square root of the tracking ISE is provided in Table II.

For the detailed analysis, three values of the parameters
(i.e., λ, ρ, βj ∈ {0.001, 0.45, 1}) were selected as described
in Fig. 3 and Fig. 4. As shown in Fig. 3a, increasing λ
reduces the weight norm of NAC-L2 via the stabilizing
function −αλθ̂. Moreover, the high dependency of NAC-L2
on the L2-regularization coefficient λ can also be observed.
Since the weight norm is decreased, NAC-L2 cannot generate
sufficient control inputs, resulting in a larger square root of
tracking ISE, as shown in Fig. 4a.

On the other hand, NAC-eMod has a lower dependency
on the ϵ-modification coefficient ρ, as shown in Fig. 3b and
Fig. 4b. This is because the stabilizing function −αρ∥z̃∥θ̂
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Fig. 3: Weight norms of NAC-L2, NAC-eMod, and NAC-
CO.
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Fig. 4: Tracking errors of NAC-L2, NAC-eMod, and NAC-
CO.

can be decreased once the tracking error z̃ is sufficiently
regulated. However, the bias of the weights to the origin still
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Fig. 5: Weight norms and Lagrange multipliers of NAC-CO
(β = 0.001).

exists, as described in Fig. 3b (i.e., smaller weight norms are
observed as ρ increases.). Therefore, similar to NAC-L2, the
biased weights produce insufficient control input, resulting
in a relatively larger square root of tracking ISE than that of
NAC-CO, as described in Table II.

Finally, the weight norm of NAC-CO is smaller than those
of NAC-L2 and NAC-eMod, as shown in Fig. 3c, with better
tracking performance. Even if a large βj is provided, NAC-
CO can adjust the adaptation direction to satisfy the weight
norm constraints faster, according to (5b). Therefore, the
lowest dependency on the update rate βj is observed in NAC-
CO, as shown in Fig. 3c and Fig. 4c. Note that βj of NAC-
CO is the update rate for the Lagrange multipliers, whereas
λ and ρ are the coefficients of the stabilizing function that
generates the biases of the weights. However, considering the
implementation using a digital computer, excessively large
βj values should be avoided.

The details of the satisfaction of the weight norm con-
straints are shown in Fig. 5 for NAC-CO with βj = 0.001. As
the weight norms of each layer reach the constraint boundary,
the corresponding Lagrange multipliers are generated. Using
the Lagrange multipliers, the adaptation direction is adjusted
toward the constraint satisfactory point. The Lagrange mul-
tipliers disappear when the constraints are satisfied, and
the weights are adapted to optimize the original objective
function without weight bias.

Furthermore, it is important to note that NAC-CO shows
enhanced tracking performance with smaller weights than
NAC-L2 and NAC-eMod. This implies that the weights in
NAC-CO approach the different local optimal solution points
from those of NAC-L2 and NAC-eMod. Therefore, if the
physical analysis of the system is available to predict the
feasible maximum control inputs, NAC-CO can find the local
optimal solution without unnecessarily large control inputs
by imposing proper weight norm constraints.

VI. CONCLUSION

In this paper, a neuro–adaptive control method is proposed
for uncertain Euler–Lagrange systems, ensuring weight

boundedness. Adaptation laws are derived by formulating
a constrained optimization problem with weight norm con-
straints. The boundedness of the tracking error and the
weight estimation are analyzed via Lyapunov analysis. The
simulation results demonstrate that the proposed controller
outperforms the existing methods in terms of tracking perfor-
mance and parameter dependency. As further work, the state
constraints for safety will be handled, ensuring stability.
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