
Imposing a Weight Norm Constraint for Neuro-Adaptive Control

IEEE European Control Conference (ECC) 2025

Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1

1Mobility Intelligence and Control Laboratory (MIC Lab)
CCS Graduate School of Mobility

Korea Advanced Institute of Science and Technology (KAIST)

2AI Graduate School
Gwangju Institute of Science and Technology (GIST)

2025-06-25

Outline

1 Background and Contributions
Introduction to Neuro-Adaptive Control
Literature Review
Contributions

2 Proposed Method
Architecture of the Proposed Method
Problem Formulation
Adaptation Law Derivation
Stability Analysis

3 Experimental Validation
Validation Setup
Validation 1: Simulation Setup
Validation 1: Simulation Results
Validation 2: Real-Time Implementation Setup
Validation 2: Real-Time Implementation Results

4 Conclusion
Conclusion and Future Work

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 2

Outline

1 Background and Contributions
Introduction to Neuro-Adaptive Control
Literature Review
Contributions

2 Proposed Method

3 Experimental Validation

4 Conclusion

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 3

Introduction to Neuro-Adaptive Control What is Neuro-Adaptive Control?

Neuro-Adaptive Control

• Neuro-adaptive control (NAC) is a control strategy that combines neural networks (NNs) with adaptive control [1].

• Features of both NNs and adaptive control can be found in NAC.

Adaptive ControlNeural Network

Neuro-Adaptive
Control

Approximation
property

Rigorous
stability
analysis

Online-learning
capability

Adaptivity
Robustness

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 4

Introduction to Neuro-Adaptive Control What is Neuro-Adaptive Control?

Advantages of Neuro-Adaptive Control

• Adaptability: NAC adapts NN weights to changing environments and system dynamics.
• Stability Guarantee: The closed-loop stability is ensured using Lyapunov stability theory.
• Online Learning Capability: NAC adapts in real-time to new data with stability guarantees.
• Robustness: NAC handles uncertainties and disturbances effectively with adaptive control techniques.

Pre-process

Neural-Network

System Function

Post-process

Observation

Control Input

Desired Trajectory

Error
backpropagation

Neuro-Adaptive Control

Figure: General framework of neuro-adaptive control (NAC).

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 5

Introduction to Neuro-Adaptive Control What is Neuro-Adaptive Control?

Advantages of Neuro-Adaptive Control

• Adaptability: NAC adapts NN weights to changing environments and system dynamics.

• Stability Guarantee: The closed-loop stability is ensured using Lyapunov stability theory.
• Online Learning Capability: NAC adapts in real-time to new data with stability guarantees.
• Robustness: NAC handles uncertainties and disturbances effectively with adaptive control techniques.

Pre-process

Neural-Network

System Function

Post-process

Observation

Control Input

Desired Trajectory

Error
backpropagation

Neuro-Adaptive Control

Figure: General framework of neuro-adaptive control (NAC).

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 5

Introduction to Neuro-Adaptive Control What is Neuro-Adaptive Control?

Advantages of Neuro-Adaptive Control

• Adaptability: NAC adapts NN weights to changing environments and system dynamics.
• Stability Guarantee: The closed-loop stability is ensured using Lyapunov stability theory.

• Online Learning Capability: NAC adapts in real-time to new data with stability guarantees.
• Robustness: NAC handles uncertainties and disturbances effectively with adaptive control techniques.

Pre-process

Neural-Network

System Function

Post-process

Observation

Control Input

Desired Trajectory

Error
backpropagation

Neuro-Adaptive Control

Figure: General framework of neuro-adaptive control (NAC).

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 5

Introduction to Neuro-Adaptive Control What is Neuro-Adaptive Control?

Advantages of Neuro-Adaptive Control

• Adaptability: NAC adapts NN weights to changing environments and system dynamics.
• Stability Guarantee: The closed-loop stability is ensured using Lyapunov stability theory.
• Online Learning Capability: NAC adapts in real-time to new data with stability guarantees.

• Robustness: NAC handles uncertainties and disturbances effectively with adaptive control techniques.

Pre-process

Neural-Network

System Function

Post-process

Observation

Control Input

Desired Trajectory

Error
backpropagation

Neuro-Adaptive Control

Figure: General framework of neuro-adaptive control (NAC).

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 5

Introduction to Neuro-Adaptive Control What is Neuro-Adaptive Control?

Advantages of Neuro-Adaptive Control

• Adaptability: NAC adapts NN weights to changing environments and system dynamics.
• Stability Guarantee: The closed-loop stability is ensured using Lyapunov stability theory.
• Online Learning Capability: NAC adapts in real-time to new data with stability guarantees.
• Robustness: NAC handles uncertainties and disturbances effectively with adaptive control techniques.

Pre-process

Neural-Network

System Function

Post-process

Observation

Control Input

Desired Trajectory

Error
backpropagation

Neuro-Adaptive Control

Figure: General framework of neuro-adaptive control (NAC).

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 5

Introduction to Neuro-Adaptive Control What is Neuro-Adaptive Control?

Existing Challenges in NAC

1. Weight Boundedness:
• Generally, NN weights are adapted by gradient descent

method.

• Objective function typically consists of the control error.

• Hence, the NN weights can grow unbounded, leading to
instability (also known as parameter drift).

• Unbounded weights can cause the NN to produce large
control inputs, which may lead to following challenges.

C
on

tro
l E

rr
or

N
N

 W
ei

gh
t

Time Time

Figure: Divergence of NN weights even with convergent
control error.

2. Control Saturation (unpredictable amplitude of NN outputs):

• Typical issue of control problem in physical systems.

• The NN outputs are unpredictable and not interpretable.

• These features—unbounded NN weights and
unpredictable amplitudes—can lead to input saturation.

Neural-Network

Input
Unpredictable

Output

Figure: Unpredictable amplitude of NN outputs.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 6

Introduction to Neuro-Adaptive Control What is Neuro-Adaptive Control?

Existing Challenges in NAC

1. Weight Boundedness:
• Generally, NN weights are adapted by gradient descent

method.

• Objective function typically consists of the control error.

• Hence, the NN weights can grow unbounded, leading to
instability (also known as parameter drift).

• Unbounded weights can cause the NN to produce large
control inputs, which may lead to following challenges.

C
on

tro
l E

rr
or

N
N

 W
ei

gh
t

Time Time

Figure: Divergence of NN weights even with convergent
control error.

2. Control Saturation (unpredictable amplitude of NN outputs):

• Typical issue of control problem in physical systems.

• The NN outputs are unpredictable and not interpretable.

• These features—unbounded NN weights and
unpredictable amplitudes—can lead to input saturation.

Neural-Network

Input
Unpredictable

Output

Figure: Unpredictable amplitude of NN outputs.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 6

Introduction to Neuro-Adaptive Control What is Neuro-Adaptive Control?

Existing Challenges in NAC

1. Weight Boundedness:
• Generally, NN weights are adapted by gradient descent

method.

• Objective function typically consists of the control error.

• Hence, the NN weights can grow unbounded, leading to
instability (also known as parameter drift).

• Unbounded weights can cause the NN to produce large
control inputs, which may lead to following challenges.

C
on

tro
l E

rr
or

N
N

 W
ei

gh
t

Time Time

Figure: Divergence of NN weights even with convergent
control error.

2. Control Saturation (unpredictable amplitude of NN outputs):

• Typical issue of control problem in physical systems.

• The NN outputs are unpredictable and not interpretable.

• These features—unbounded NN weights and
unpredictable amplitudes—can lead to input saturation.

Neural-Network

Input
Unpredictable

Output

Figure: Unpredictable amplitude of NN outputs.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 6

Literature Review

1. Projection Operator for weight
boundednss

• Projects the NN weights onto a
convex set.

• Ensures that the weights remain
within a predefined bound.

θ̂ ← Projθ(θ̂) (1)

2. σ-modification, and ϵ-modification
for weight boundednss

• Add a stabilizing term (e.g., −σθ̂)
to adaptation law.

• Construct a invariant set of the NN
weights.

d
dt θ̂ ←

d
dt θ̂ − σθ̂ (2)

3. Additional Control Inputs for control
saturation

• Conventional controllers are used to
address control input saturation.

• Barrier Lyapunov function or
auxiliary system-based control
inputs.

• In general, nominal models are
required.

Figure: Projection of NN weights on a
convex set.

with stabilizing function

original adaptation result

Figure: Adaptation result with stabilizing
function (e.g., σ-modification).

Conventional Controller
for Input Constraint Handling

Neural-Network

Feedback Signal

Neuro-Adaptive Control

Control Input

Figure: Control input saturation handling
with additional control inputs.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 7

Literature Review

1. Projection Operator for weight
boundednss

• Projects the NN weights onto a
convex set.

• Ensures that the weights remain
within a predefined bound.

θ̂ ← Projθ(θ̂) (1)

2. σ-modification, and ϵ-modification
for weight boundednss

• Add a stabilizing term (e.g., −σθ̂)
to adaptation law.

• Construct a invariant set of the NN
weights.

d
dt θ̂ ←

d
dt θ̂ − σθ̂ (2)

3. Additional Control Inputs for control
saturation

• Conventional controllers are used to
address control input saturation.

• Barrier Lyapunov function or
auxiliary system-based control
inputs.

• In general, nominal models are
required.

Figure: Projection of NN weights on a
convex set.

with stabilizing function

original adaptation result

Figure: Adaptation result with stabilizing
function (e.g., σ-modification).

Conventional Controller
for Input Constraint Handling

Neural-Network

Feedback Signal

Neuro-Adaptive Control

Control Input

Figure: Control input saturation handling
with additional control inputs.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 7

Literature Review

1. Projection Operator for weight
boundednss

• Projects the NN weights onto a
convex set.

• Ensures that the weights remain
within a predefined bound.

θ̂ ← Projθ(θ̂) (1)

2. σ-modification, and ϵ-modification
for weight boundednss

• Add a stabilizing term (e.g., −σθ̂)
to adaptation law.

• Construct a invariant set of the NN
weights.

d
dt θ̂ ←

d
dt θ̂ − σθ̂ (2)

3. Additional Control Inputs for control
saturation

• Conventional controllers are used to
address control input saturation.

• Barrier Lyapunov function or
auxiliary system-based control
inputs.

• In general, nominal models are
required.

Figure: Projection of NN weights on a
convex set.

with stabilizing function

original adaptation result

Figure: Adaptation result with stabilizing
function (e.g., σ-modification).

Conventional Controller
for Input Constraint Handling

Neural-Network

Feedback Signal

Neuro-Adaptive Control

Control Input

Figure: Control input saturation handling
with additional control inputs.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 7

Literature Review

1. Projection Operator for weight
boundednss

• Projects the NN weights onto a
convex set.

• Ensures that the weights remain
within a predefined bound.

θ̂ ← Projθ(θ̂) (1)

2. σ-modification, and ϵ-modification
for weight boundednss

• Add a stabilizing term (e.g., −σθ̂)
to adaptation law.

• Construct a invariant set of the NN
weights.

d
dt θ̂ ←

d
dt θ̂ − σθ̂ (2)

3. Additional Control Inputs for control
saturation
• Conventional controllers are used to

address control input saturation.

• Barrier Lyapunov function or
auxiliary system-based control
inputs.

• In general, nominal models are
required.

Figure: Projection of NN weights on a
convex set.

with stabilizing function

original adaptation result

Figure: Adaptation result with stabilizing
function (e.g., σ-modification).

Conventional Controller
for Input Constraint Handling

Neural-Network

Feedback Signal

Neuro-Adaptive Control

Control Input

Figure: Control input saturation handling
with additional control inputs.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 7

Literature Review Limitations of Existing Methods

Limitation 1: Lack of Optimality

• The existing methods do not guarantee the optimality of the control input.
• Projection operator:

• The projection operator simply projects the NN weights onto a convex set, regardless of the imposed constraints
(e.g., weight boundedness or input saturation).

• Moreover, if the convex set is conservatively defined, the weights may be limited to a suboptimal region.

• σ- and ϵ-modification:
• The stabilizing term biases the NN weights towards the origin.
• Therefore, the weights converge toward a suboptimal point.

Limitation 2: Disruption of Learning Process by Additional Control Inputs

• Feedback tracking error for learning is disrupted by additional control inputs.
• The feedback error does not reflect the error induced by the NN, directly.
• The additional control inputs may exceeds the input saturation limits , already.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 8

Literature Review Limitations of Existing Methods

Limitation 1: Lack of Optimality

• The existing methods do not guarantee the optimality of the control input.

• Projection operator:
• The projection operator simply projects the NN weights onto a convex set, regardless of the imposed constraints

(e.g., weight boundedness or input saturation).
• Moreover, if the convex set is conservatively defined, the weights may be limited to a suboptimal region.

• σ- and ϵ-modification:
• The stabilizing term biases the NN weights towards the origin.
• Therefore, the weights converge toward a suboptimal point.

Limitation 2: Disruption of Learning Process by Additional Control Inputs

• Feedback tracking error for learning is disrupted by additional control inputs.
• The feedback error does not reflect the error induced by the NN, directly.
• The additional control inputs may exceeds the input saturation limits , already.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 8

Literature Review Limitations of Existing Methods

Limitation 1: Lack of Optimality

• The existing methods do not guarantee the optimality of the control input.
• Projection operator:

• The projection operator simply projects the NN weights onto a convex set, regardless of the imposed constraints
(e.g., weight boundedness or input saturation).

• Moreover, if the convex set is conservatively defined, the weights may be limited to a suboptimal region.

• σ- and ϵ-modification:
• The stabilizing term biases the NN weights towards the origin.
• Therefore, the weights converge toward a suboptimal point.

Limitation 2: Disruption of Learning Process by Additional Control Inputs

• Feedback tracking error for learning is disrupted by additional control inputs.
• The feedback error does not reflect the error induced by the NN, directly.
• The additional control inputs may exceeds the input saturation limits , already.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 8

Literature Review Limitations of Existing Methods

Limitation 1: Lack of Optimality

• The existing methods do not guarantee the optimality of the control input.
• Projection operator:

• The projection operator simply projects the NN weights onto a convex set, regardless of the imposed constraints
(e.g., weight boundedness or input saturation).

• Moreover, if the convex set is conservatively defined, the weights may be limited to a suboptimal region.

• σ- and ϵ-modification:
• The stabilizing term biases the NN weights towards the origin.
• Therefore, the weights converge toward a suboptimal point.

Limitation 2: Disruption of Learning Process by Additional Control Inputs

• Feedback tracking error for learning is disrupted by additional control inputs.
• The feedback error does not reflect the error induced by the NN, directly.
• The additional control inputs may exceeds the input saturation limits , already.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 8

Literature Review Limitations of Existing Methods

Limitation 1: Lack of Optimality

• The existing methods do not guarantee the optimality of the control input.
• Projection operator:

• The projection operator simply projects the NN weights onto a convex set, regardless of the imposed constraints
(e.g., weight boundedness or input saturation).

• Moreover, if the convex set is conservatively defined, the weights may be limited to a suboptimal region.

• σ- and ϵ-modification:
• The stabilizing term biases the NN weights towards the origin.
• Therefore, the weights converge toward a suboptimal point.

Limitation 2: Disruption of Learning Process by Additional Control Inputs

• Feedback tracking error for learning is disrupted by additional control inputs.
• The feedback error does not reflect the error induced by the NN, directly.
• The additional control inputs may exceeds the input saturation limits , already.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 8

Contributions

Contribution 1: Unified Constrained Optimization Framework

• Trajectory tracking and constraint handling are formulated as a unified constrained optimization problem.
• The conventional controllers does not required.

• Nominal model knowledge is not required for the conventional controllers.

Contribution 2: Online Learning Capability (Stability Guarantees)

• Stability are rigorously proven using Lyapunov stability theory.

• Hence, online learningwith no prior system knowledge is possible.

Contribution 3: Weight and Control Input Constraint Handling

• Weight and control input constraints are explicitly considered in the optimization problem.

• Any combination of convex input constraints can be handled.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 9

Contributions

Contribution 1: Unified Constrained Optimization Framework

• Trajectory tracking and constraint handling are formulated as a unified constrained optimization problem.
• The conventional controllers does not required.

• Nominal model knowledge is not required for the conventional controllers.

Contribution 2: Online Learning Capability (Stability Guarantees)

• Stability are rigorously proven using Lyapunov stability theory.

• Hence, online learningwith no prior system knowledge is possible.

Contribution 3: Weight and Control Input Constraint Handling

• Weight and control input constraints are explicitly considered in the optimization problem.

• Any combination of convex input constraints can be handled.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 9

Contributions

Contribution 1: Unified Constrained Optimization Framework

• Trajectory tracking and constraint handling are formulated as a unified constrained optimization problem.
• The conventional controllers does not required.

• Nominal model knowledge is not required for the conventional controllers.

Contribution 2: Online Learning Capability (Stability Guarantees)

• Stability are rigorously proven using Lyapunov stability theory.

• Hence, online learningwith no prior system knowledge is possible.

Contribution 3: Weight and Control Input Constraint Handling

• Weight and control input constraints are explicitly considered in the optimization problem.

• Any combination of convex input constraints can be handled.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 9

Contributions

Contribution 1: Unified Constrained Optimization Framework

• Trajectory tracking and constraint handling are formulated as a unified constrained optimization problem.
• The conventional controllers does not required.

• Nominal model knowledge is not required for the conventional controllers.

Contribution 2: Online Learning Capability (Stability Guarantees)

• Stability are rigorously proven using Lyapunov stability theory.

• Hence, online learningwith no prior system knowledge is possible.

Contribution 3: Weight and Control Input Constraint Handling

• Weight and control input constraints are explicitly considered in the optimization problem.

• Any combination of convex input constraints can be handled.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 9

Outline

1 Background and Contributions

2 Proposed Method
Architecture of the Proposed Method
Problem Formulation
Adaptation Law Derivation
Stability Analysis

3 Experimental Validation

4 Conclusion

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 10

Architecture of the Proposed Method

Target Two-link Robotic Manipulator System:
• Control input saturation function sat(·).

• Desired trajectory qd is given.

Mq̈ + Vmq̇ + F + G + τ d = sat(τ) (3)

Control Input:
• NN’s output Φ is used as the control input.

• Consists of the estimated NN weights θ̂.

τ := Φ(qn; θ̂) (4)

Deep Neural Network (DNN):

• k layers with weights θ̂i := vec(Ŵ i).

• Activation function: ϕ(·) := tanh(·).

Φ(qn; θ̂) :=

{
Ŵ

⊤
i ϕi (Φ̂i−1), i ∈ {1, . . . , k},

Ŵ
⊤
0 qn, i = 0,

(5)

Weight
Optimizer

Deep
Neural

Network
System
Model

Error Filtering

Constrained Optimization-Based Neuro-Adaptive Controller

Figure: Architecture of the proposed method.

Output LayerHidden Layer 1 Hidden Layer 2Input Layer

Figure: Architecture of the DNN.

Notations: q ∈ Rn: Joint position, M: Inertia matrix, C : Coriolis matrix, G : Gravity vector, τ : Control input, τd : Disturbance.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 11

Architecture of the Proposed Method

Target Two-link Robotic Manipulator System:
• Control input saturation function sat(·).

• Desired trajectory qd is given.

Mq̈ + Vmq̇ + F + G + τ d = sat(τ) (3)

Control Input:
• NN’s output Φ is used as the control input.

• Consists of the estimated NN weights θ̂.

τ := Φ(qn; θ̂) (4)

Deep Neural Network (DNN):

• k layers with weights θ̂i := vec(Ŵ i).

• Activation function: ϕ(·) := tanh(·).

Φ(qn; θ̂) :=

{
Ŵ

⊤
i ϕi (Φ̂i−1), i ∈ {1, . . . , k},

Ŵ
⊤
0 qn, i = 0,

(5)

Weight
Optimizer

Deep
Neural

Network
System
Model

Error Filtering

Constrained Optimization-Based Neuro-Adaptive Controller

Figure: Architecture of the proposed method.

Output LayerHidden Layer 1 Hidden Layer 2Input Layer

Figure: Architecture of the DNN.

Notations: q ∈ Rn: Joint position, M: Inertia matrix, C : Coriolis matrix, G : Gravity vector, τ : Control input, τd : Disturbance.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 11

Architecture of the Proposed Method

Target Two-link Robotic Manipulator System:
• Control input saturation function sat(·).

• Desired trajectory qd is given.

Mq̈ + Vmq̇ + F + G + τ d = sat(τ) (3)

Control Input:
• NN’s output Φ is used as the control input.

• Consists of the estimated NN weights θ̂.

τ := Φ(qn; θ̂) (4)

Deep Neural Network (DNN):

• k layers with weights θ̂i := vec(Ŵ i).

• Activation function: ϕ(·) := tanh(·).

Φ(qn; θ̂) :=

{
Ŵ

⊤
i ϕi (Φ̂i−1), i ∈ {1, . . . , k},

Ŵ
⊤
0 qn, i = 0,

(5)

Weight
Optimizer

Deep
Neural

Network
System
Model

Error Filtering

Constrained Optimization-Based Neuro-Adaptive Controller

Figure: Architecture of the proposed method.

Output LayerHidden Layer 1 Hidden Layer 2Input Layer

Figure: Architecture of the DNN.

Notations: q ∈ Rn: Joint position, M: Inertia matrix, C : Coriolis matrix, G : Gravity vector, τ : Control input, τd : Disturbance.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 11

Architecture of the Proposed Method

Target Two-link Robotic Manipulator System:
• Control input saturation function sat(·).

• Desired trajectory qd is given.

Mq̈ + Vmq̇ + F + G + τ d = sat(τ) (3)

Control Input:
• NN’s output Φ is used as the control input.

• Consists of the estimated NN weights θ̂.

τ := Φ(qn; θ̂) (4)

Deep Neural Network (DNN):

• k layers with weights θ̂i := vec(Ŵ i).

• Activation function: ϕ(·) := tanh(·).

Φ(qn; θ̂) :=

{
Ŵ

⊤
i ϕi (Φ̂i−1), i ∈ {1, . . . , k},

Ŵ
⊤
0 qn, i = 0,

(5)

Weight
Optimizer

Deep
Neural

Network
System
Model

Error Filtering

Constrained Optimization-Based Neuro-Adaptive Controller

Figure: Architecture of the proposed method.

Output LayerHidden Layer 1 Hidden Layer 2Input Layer

Figure: Architecture of the DNN.

Notations: q ∈ Rn: Joint position, M: Inertia matrix, C : Coriolis matrix, G : Gravity vector, τ : Control input, τd : Disturbance.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 11

Problem Formulation Optimization Problem

Optimization Problem Statement:
• Find NN weights θ̂,

• That minimize objective function J(·),

J(r ; θ̂) :=
1
2
r⊤r . (6)

• where r := d
dt e + Λe is filtered tracking error,

• while satisfying the following constraints:
• Boundedness of the NN weights θ̂.
• Saturation of the control input τ .

Considered Constraints

• Weight Boundedness for Each Layer:

cθi (θ̂) := ∥θ̂i∥2 − θi
2 ≤ 0, ∀i ∈ {0, . . . , k} (7)

• Convex control Input Saturation:

• Input bound constraint for each control input:

cτ i
(θ̂) := τi − τi ≤ 0, cτ i

(θ̂) := τi − τi ≤ 0 (8)

• Input norm constraint:

cτ (θ̂) := ∥τ∥2 − τ
2 ≤ 0 (9)

Notations: Λ ∈ Rn×n
>0 : filtering matrix

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 12

Problem Formulation Optimization Problem

Optimization Problem Statement:
• Find NN weights θ̂,

• That minimize objective function J(·),

J(r ; θ̂) :=
1
2
r⊤r . (6)

• where r := d
dt e + Λe is filtered tracking error,

• while satisfying the following constraints:
• Boundedness of the NN weights θ̂.
• Saturation of the control input τ .

Considered Constraints

• Weight Boundedness for Each Layer:

cθi (θ̂) := ∥θ̂i∥2 − θi
2 ≤ 0, ∀i ∈ {0, . . . , k} (7)

• Convex control Input Saturation:

• Input bound constraint for each control input:

cτ i
(θ̂) := τi − τi ≤ 0, cτ i

(θ̂) := τi − τi ≤ 0 (8)

• Input norm constraint:

cτ (θ̂) := ∥τ∥2 − τ
2 ≤ 0 (9)

Notations: Λ ∈ Rn×n
>0 : filtering matrix

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 12

Problem Formulation Optimization Problem

Original Optimization Problem

• Constrained optimization problem to minimize the tracking error.
• Inequality constraints cj (θ̂) ≤ 0 for j ∈ I.

min
θ̂
J(r ; θ̂)

s.t. cj (θ̂) ≤ 0,∀j ∈ I
(10)

Define Lagrangian Function

L(r , θ̂, [λj]j∈I) := J(r ; θ̂) +
∑
j∈I

λjcj (θ̂) (11)

Dual Problem

• The dual problem is to minimize the Lagrangian function with respect to the NN weights θ̂, while maximizing
with respect to the Lagrange multipliers λj .

• The Lagrange multipliers λj are non-negative, i.e., λj ≥ 0.

min
θ̂

max
[λj]j∈I

L(r , θ̂, [λj]j∈I) (12)

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 13

Problem Formulation Optimization Problem

Original Optimization Problem

• Constrained optimization problem to minimize the tracking error.
• Inequality constraints cj (θ̂) ≤ 0 for j ∈ I.

min
θ̂
J(r ; θ̂)

s.t. cj (θ̂) ≤ 0,∀j ∈ I
(10)

Define Lagrangian Function

L(r , θ̂, [λj]j∈I) := J(r ; θ̂) +
∑
j∈I

λjcj (θ̂) (11)

Dual Problem

• The dual problem is to minimize the Lagrangian function with respect to the NN weights θ̂, while maximizing
with respect to the Lagrange multipliers λj .

• The Lagrange multipliers λj are non-negative, i.e., λj ≥ 0.

min
θ̂

max
[λj]j∈I

L(r , θ̂, [λj]j∈I) (12)

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 13

Problem Formulation Optimization Problem

Original Optimization Problem

• Constrained optimization problem to minimize the tracking error.
• Inequality constraints cj (θ̂) ≤ 0 for j ∈ I.

min
θ̂
J(r ; θ̂)

s.t. cj (θ̂) ≤ 0,∀j ∈ I
(10)

Define Lagrangian Function

L(r , θ̂, [λj]j∈I) := J(r ; θ̂) +
∑
j∈I

λjcj (θ̂) (11)

Dual Problem

• The dual problem is to minimize the Lagrangian function with respect to the NN weights θ̂, while maximizing
with respect to the Lagrange multipliers λj .

• The Lagrange multipliers λj are non-negative, i.e., λj ≥ 0.

min
θ̂

max
[λj]j∈I

L(r , θ̂, [λj]j∈I) (12)

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 13

Adaptation Law Derivation Gradient Descent/Ascent Method

To solve the dual problem,
min
θ̂

max
[λj]j∈I

L(r , θ̂, [λj]j∈I), (13)

the first-order gradient descent/ascent method is used to derive the adaptation law.

Adaptation Law

Gradient Descent Method for weights θ̂:

d
dt θ̂ = −α ∂L

∂θ̂
= −α

(
∂J

∂θ̂
+

∑
j∈I λj

∂cj

∂θ̂

)
, (14)

Gradient Ascent Method for Lagrange multipliers λj , ∀j ∈ I:
d
dt λj = βj

∂L
∂λj

= βjcj , (15)

For non-negativity of the Lagrange multipliers,

λj ← max(λj , 0). (16)

α: adaptation gain (learning rate), βj : update rate of the Lagrange multipliers.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 14

Adaptation Law Derivation Gradient Descent/Ascent Method

To solve the dual problem,
min
θ̂

max
[λj]j∈I

L(r , θ̂, [λj]j∈I), (13)

the first-order gradient descent/ascent method is used to derive the adaptation law.

Adaptation Law

Gradient Descent Method for weights θ̂:

d
dt θ̂ = −α ∂L

∂θ̂
= −α

(
∂J

∂θ̂
+

∑
j∈I λj

∂cj

∂θ̂

)
, (14)

Gradient Ascent Method for Lagrange multipliers λj , ∀j ∈ I:
d
dt λj = βj

∂L
∂λj

= βjcj , (15)

For non-negativity of the Lagrange multipliers,

λj ← max(λj , 0). (16)

α: adaptation gain (learning rate), βj : update rate of the Lagrange multipliers.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 14

Adaptation Law Derivation Gradient Descent/Ascent Method

To solve the dual problem,
min
θ̂

max
[λj]j∈I

L(r , θ̂, [λj]j∈I), (13)

the first-order gradient descent/ascent method is used to derive the adaptation law.

Adaptation Law

Gradient Descent Method for weights θ̂:

d
dt θ̂ = −α ∂L

∂θ̂
= −α

(
∂J

∂θ̂
+

∑
j∈I λj

∂cj

∂θ̂

)
, (14)

Gradient Ascent Method for Lagrange multipliers λj , ∀j ∈ I:
d
dt λj = βj

∂L
∂λj

= βjcj , (15)

For non-negativity of the Lagrange multipliers,

λj ← max(λj , 0). (16)

α: adaptation gain (learning rate), βj : update rate of the Lagrange multipliers.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 14

Adaptation Law Derivation Gradient Descent/Ascent Method

To solve the dual problem,
min
θ̂

max
[λj]j∈I

L(r , θ̂, [λj]j∈I), (13)

the first-order gradient descent/ascent method is used to derive the adaptation law.

Adaptation Law

Gradient Descent Method for weights θ̂:

d
dt θ̂ = −α ∂L

∂θ̂
= −α

(
∂J

∂θ̂
+

∑
j∈I λj

∂cj

∂θ̂

)
, (14)

Gradient Ascent Method for Lagrange multipliers λj , ∀j ∈ I:
d
dt λj = βj

∂L
∂λj

= βjcj , (15)

For non-negativity of the Lagrange multipliers,

λj ← max(λj , 0). (16)

α: adaptation gain (learning rate), βj : update rate of the Lagrange multipliers.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 14

Stability Analysis Lyapunov Stability Analysis

Theorem 1 [2]

For the dynamical system described in (3), the neuro-adaptive controller in (4) with the weight adaptation laws in
(14), (15) and (16) ensure the boundedness of the filtered error r and the weight estimate θ̂, under the control
input constraintssatisfying Assumption 1 and 2. This holds under the weight norm constraint (7).

Assumption 1 (Convex Input Constraint)

The constraint functions cj (θ̂), ∀j ∈ I, are convex in the τ -space and satisfy cj (θ̂) ≤ 0 and cj (θ
∗) ≤ 0.

Assumption 2, Linear Independence Constraint Qualification (LICQ)

The selected constraints satisfy the Linear Independence Constraint Qualification (LICQ) [3, Chap. 12 Def. 12.1].

Proof of Theorem 1 is omitted due to space limitations. The detailed proof can be found in [2].

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 15

Outline

1 Background and Contributions

2 Proposed Method

3 Experimental Validation
Validation Setup
Validation 1: Simulation Setup
Validation 1: Simulation Results
Validation 2: Real-Time Implementation Setup
Validation 2: Real-Time Implementation Results

4 Conclusion

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 16

Validation Setup

Validation 1: Simulation of a Two-link Robotic Manipulator System

• Weight norm constraint is considered.

• Single-hidden layer NN is used.

• Parameter dependencies are investigated, by varying crucial parameters.

Validation 2: Real-time Implementation on a Two-link Robotic Manipulator System

• Weight norm constraint and input saturation constraints are considered.

• 2 hidden layer NN is used.

• Constraint handling process is compared.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 17

Validation 1: Simulation Setup Two-Link Robotic Manipulator

Target System:

Mq̈ + Vmq̇ + F + G + τ d = τ

Figure: Two-link robotic manipulator model.

Desired Trajectory:

qd =

(
qd 1
qd 2

)
=

(
+cos(π2 t) + 1
− cos(π2 t)− 1

)
. (17)

System Model Parameters:

Table: System model parameters.

Symbol Description Link 1 Link 2

mp Mass 23.902 kg 3.88 kg

lp Length 0.45 m 0.45 m

lc p COM 0.091 m 0.048 m

bp
Viscous
coef. 2.288 Nms 0.172 Nms

fc p
Friction
coef. 7.17 Nm 1.734 Nm

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 18

Validation 1: Simulation Setup Controllers for Comparative Study

• NAC-CO denotes the proposed controller based on constrained optimization .
• For NAC-L2 and NAC-eMod, the stabilizing terms −σθ̂ and ρ∥r∥θ̂ ensures the weights boundedness,

respectively.

Name Description Adaptation Law

NAC-L2
NAC with L2-regularization (equal to σ-modification) d

dt θ̂ = −α
(

∂J

∂θ̂
+ σθ̂

)
(σ stabilizes θ̂ towards origin)

NAC-eMod
NAC with ϵ-modification d

dt θ̂ = −α
(

∂J

∂θ̂
+ ρ∥r̃∥θ̂

)
(ρ stabilizes proportionally to filtered error r)

NAC-CO
Constrained Optimization-based NAC d

dt θ̂ = −α
(

∂J

∂θ̂
+

∑
j∈I λj

∂cj

∂θ̂

)
(proposed) (βj determines λj adaptation speed) d

dt λj = βjcj , and λj ← max(λj , 0)

Simulation Objective

By varying the parameters , i.e., βj , σ, and ρ, the parameter dependencies will be investigated.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 19

Validation 1: Simulation Setup Controllers for Comparative Study

• NAC-CO denotes the proposed controller based on constrained optimization .
• For NAC-L2 and NAC-eMod, the stabilizing terms −σθ̂ and ρ∥r∥θ̂ ensures the weights boundedness,

respectively.

Name Description Adaptation Law

NAC-L2
NAC with L2-regularization (equal to σ-modification) d

dt θ̂ = −α
(

∂J

∂θ̂
+ σθ̂

)
(σ stabilizes θ̂ towards origin)

NAC-eMod
NAC with ϵ-modification d

dt θ̂ = −α
(

∂J

∂θ̂
+ ρ∥r̃∥θ̂

)
(ρ stabilizes proportionally to filtered error r)

NAC-CO
Constrained Optimization-based NAC d

dt θ̂ = −α
(

∂J

∂θ̂
+

∑
j∈I λj

∂cj

∂θ̂

)
(proposed) (βj determines λj adaptation speed) d

dt λj = βjcj , and λj ← max(λj , 0)

Simulation Objective

By varying the parameters , i.e., βj , σ, and ρ, the parameter dependencies will be investigated.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 19

Validation 1: Simulation Results Box-and-Whisker Plots

Parameter Dependencies Investigation:
• The parameters ranged from 0.001 to 1 across 10 samples.

• NAC-L2 shows the worst performance with high variance.

• NAC-CO (proposed) shows the best performance and lowest variance.

• This result is because,

• NAC-L2 and NAC-eMod are biased towards the origin.
d
dt θ̂ = −α(∂J

∂θ̂
+ σθ̂) (NAC-L2) or +ρ∥r∥θ̂ (NAC-eMod),

proportionally to σ and ρ, respectively.
• −λj

∂cj

∂θ̂
in NAC-CO (proposed) (i.e., d

dt θ̂ = −α(∂J

∂θ̂
+ λj

∂cj

∂θ̂
))

disappears when constraints are inactive (i.e., cj < 0, and
λ = βjcj and λj ← max(λj , 0)).

Figure: Box-and-whisker plots of the tracking error
ISE.

NAC-L2 NAC-eMod NAC-CO (proposed)

Maximum 11.1753×10−3 0.5603× 10−3 0.3439× 10−3

Median 0.5898×10−3 0.5519× 10−3 0.3240× 10−3

Minimum 0.5434×10−3 0.5434× 10−3 0.3235× 10−3

Squared root of the tracking error ISE (Integral of Squared Error), i.e.,
√∫ T

0 ∥r∥2 dt, where T denotes a simulation time.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 20

Validation 1: Simulation Results Box-and-Whisker Plots

Parameter Dependencies Investigation:
• The parameters ranged from 0.001 to 1 across 10 samples.

• NAC-L2 shows the worst performance with high variance.

• NAC-CO (proposed) shows the best performance and lowest variance.

• This result is because,

• NAC-L2 and NAC-eMod are biased towards the origin.
d
dt θ̂ = −α(∂J

∂θ̂
+ σθ̂) (NAC-L2) or +ρ∥r∥θ̂ (NAC-eMod),

proportionally to σ and ρ, respectively.
• −λj

∂cj

∂θ̂
in NAC-CO (proposed) (i.e., d

dt θ̂ = −α(∂J

∂θ̂
+ λj

∂cj

∂θ̂
))

disappears when constraints are inactive (i.e., cj < 0, and
λ = βjcj and λj ← max(λj , 0)).

Figure: Box-and-whisker plots of the tracking error
ISE.

NAC-L2 NAC-eMod NAC-CO (proposed)

Maximum 11.1753×10−3 0.5603× 10−3 0.3439× 10−3

Median 0.5898×10−3 0.5519× 10−3 0.3240× 10−3

Minimum 0.5434×10−3 0.5434× 10−3 0.3235× 10−3

Squared root of the tracking error ISE (Integral of Squared Error), i.e.,
√∫ T

0 ∥r∥2 dt, where T denotes a simulation time.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 20

Validation 1: Simulation Results Box-and-Whisker Plots

Parameter Dependencies Investigation:
• The parameters ranged from 0.001 to 1 across 10 samples.

• NAC-L2 shows the worst performance with high variance.

• NAC-CO (proposed) shows the best performance and lowest variance.

• This result is because,

• NAC-L2 and NAC-eMod are biased towards the origin.
d
dt θ̂ = −α(∂J

∂θ̂
+ σθ̂) (NAC-L2) or +ρ∥r∥θ̂ (NAC-eMod),

proportionally to σ and ρ, respectively.
• −λj

∂cj

∂θ̂
in NAC-CO (proposed) (i.e., d

dt θ̂ = −α(∂J

∂θ̂
+ λj

∂cj

∂θ̂
))

disappears when constraints are inactive (i.e., cj < 0, and
λ = βjcj and λj ← max(λj , 0)).

Figure: Box-and-whisker plots of the tracking error
ISE.

NAC-L2 NAC-eMod NAC-CO (proposed)

Maximum 11.1753×10−3 0.5603× 10−3 0.3439× 10−3

Median 0.5898×10−3 0.5519× 10−3 0.3240× 10−3

Minimum 0.5434×10−3 0.5434× 10−3 0.3235× 10−3

Squared root of the tracking error ISE (Integral of Squared Error), i.e.,
√∫ T

0 ∥r∥2 dt, where T denotes a simulation time.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 20

Validation 1: Simulation Results Box-and-Whisker Plots

Parameter Dependencies Investigation:
• The parameters ranged from 0.001 to 1 across 10 samples.

• NAC-L2 shows the worst performance with high variance.

• NAC-CO (proposed) shows the best performance and lowest variance.

• This result is because,

• NAC-L2 and NAC-eMod are biased towards the origin.
d
dt θ̂ = −α(∂J

∂θ̂
+ σθ̂) (NAC-L2) or +ρ∥r∥θ̂ (NAC-eMod),

proportionally to σ and ρ, respectively.
• −λj

∂cj

∂θ̂
in NAC-CO (proposed) (i.e., d

dt θ̂ = −α(∂J

∂θ̂
+ λj

∂cj

∂θ̂
))

disappears when constraints are inactive (i.e., cj < 0, and
λ = βjcj and λj ← max(λj , 0)).

Figure: Box-and-whisker plots of the tracking error
ISE.

NAC-L2 NAC-eMod NAC-CO (proposed)

Maximum 11.1753×10−3 0.5603× 10−3 0.3439× 10−3

Median 0.5898×10−3 0.5519× 10−3 0.3240× 10−3

Minimum 0.5434×10−3 0.5434× 10−3 0.3235× 10−3

Squared root of the tracking error ISE (Integral of Squared Error), i.e.,
√∫ T

0 ∥r∥2 dt, where T denotes a simulation time.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 20

Validation 1: Simulation Results Box-and-Whisker Plots

Parameter Dependencies Investigation:
• The parameters ranged from 0.001 to 1 across 10 samples.

• NAC-L2 shows the worst performance with high variance.

• NAC-CO (proposed) shows the best performance and lowest variance.

• This result is because,

• NAC-L2 and NAC-eMod are biased towards the origin.
d
dt θ̂ = −α(∂J

∂θ̂
+ σθ̂) (NAC-L2) or +ρ∥r∥θ̂ (NAC-eMod),

proportionally to σ and ρ, respectively.

• −λj
∂cj

∂θ̂
in NAC-CO (proposed) (i.e., d

dt θ̂ = −α(∂J

∂θ̂
+ λj

∂cj

∂θ̂
))

disappears when constraints are inactive (i.e., cj < 0, and
λ = βjcj and λj ← max(λj , 0)).

Figure: Box-and-whisker plots of the tracking error
ISE.

NAC-L2 NAC-eMod NAC-CO (proposed)

Maximum 11.1753×10−3 0.5603× 10−3 0.3439× 10−3

Median 0.5898×10−3 0.5519× 10−3 0.3240× 10−3

Minimum 0.5434×10−3 0.5434× 10−3 0.3235× 10−3

Squared root of the tracking error ISE (Integral of Squared Error), i.e.,
√∫ T

0 ∥r∥2 dt, where T denotes a simulation time.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 20

Validation 1: Simulation Results Box-and-Whisker Plots

Parameter Dependencies Investigation:
• The parameters ranged from 0.001 to 1 across 10 samples.

• NAC-L2 shows the worst performance with high variance.

• NAC-CO (proposed) shows the best performance and lowest variance.

• This result is because,

• NAC-L2 and NAC-eMod are biased towards the origin.
d
dt θ̂ = −α(∂J

∂θ̂
+ σθ̂) (NAC-L2) or +ρ∥r∥θ̂ (NAC-eMod),

proportionally to σ and ρ, respectively.
• −λj

∂cj

∂θ̂
in NAC-CO (proposed) (i.e., d

dt θ̂ = −α(∂J

∂θ̂
+ λj

∂cj

∂θ̂
))

disappears when constraints are inactive (i.e., cj < 0, and
λ = βjcj and λj ← max(λj , 0)).

Figure: Box-and-whisker plots of the tracking error
ISE.

NAC-L2 NAC-eMod NAC-CO (proposed)

Maximum 11.1753×10−3 0.5603× 10−3 0.3439× 10−3

Median 0.5898×10−3 0.5519× 10−3 0.3240× 10−3

Minimum 0.5434×10−3 0.5434× 10−3 0.3235× 10−3

Squared root of the tracking error ISE (Integral of Squared Error), i.e.,
√∫ T

0 ∥r∥2 dt, where T denotes a simulation time.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 20

Validation 1: Simulation Results Weight Norms

0 2 4 6 8 10

0

20

40

60

Figure: Weight norms of NAC-L2

0 2 4 6 8 10

0

20

40

60

Figure: Weight norms of NAC-eMod

0 2 4 6 8 10

0

20

40

60

Figure: Weight norms of NAC-CO
(proposed)

• NAC-CO (proposed) showed the weight norms are bounded under pre-defined constraint θ = 20.

• NAC-L2 and NAC-eMod showed the bounded weight norms, but they depended on the parameters σ and ρ,
respectively.

• In other words, NAC-CO tracked the desired trajectory with a smaller weight norm than NAC-L2 and
NAC-eMod.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 21

Validation 1: Simulation Results Weight Norms

0 2 4 6 8 10

0

20

40

60

Figure: Weight norms of NAC-L2

0 2 4 6 8 10

0

20

40

60

Figure: Weight norms of NAC-eMod

0 2 4 6 8 10

0

20

40

60

Figure: Weight norms of NAC-CO
(proposed)

• NAC-CO (proposed) showed the weight norms are bounded under pre-defined constraint θ = 20.

• NAC-L2 and NAC-eMod showed the bounded weight norms, but they depended on the parameters σ and ρ,
respectively.

• In other words, NAC-CO tracked the desired trajectory with a smaller weight norm than NAC-L2 and
NAC-eMod.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 21

Validation 1: Simulation Results Weight Norms

0 2 4 6 8 10

0

20

40

60

Figure: Weight norms of NAC-L2

0 2 4 6 8 10

0

20

40

60

Figure: Weight norms of NAC-eMod

0 2 4 6 8 10

0

20

40

60

Figure: Weight norms of NAC-CO
(proposed)

• NAC-CO (proposed) showed the weight norms are bounded under pre-defined constraint θ = 20.

• NAC-L2 and NAC-eMod showed the bounded weight norms, but they depended on the parameters σ and ρ,
respectively.

• In other words, NAC-CO tracked the desired trajectory with a smaller weight norm than NAC-L2 and
NAC-eMod.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 21

Validation 1: Simulation Results Tracking Performance

0 2 4 6 8 10

0

0.01

0.02

0.03

Figure: Tracking error of NAC-L2

0 2 4 6 8 10

0

0.01

0.02

0.03

Figure: Tracking error of NAC-eMod

0 2 4 6 8 10

0

0.01

0.02

0.03

Figure: Tracking error of NAC-CO
(proposed)

• NAC-CO (proposed) outperformed NAC-L2 and NAC-eMod in terms of tracking performance.

• As the weights are biased towards the origin proportionally to the parameters σ and ρ in NAC-L2 and
NAC-eMod, respectively, the tracking performance of NAC-L2 and NAC-eMod deteriorated, as approaching
toward suboptimal points.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 22

Validation 2: Real-Time Implementation Setup

Controller:
• OpenCR 1.0 Board

• Control loop at 250 Hz (4 ms sampling time)

Input Saturation Constraints:

Figure: Input Saturation Function.

Experimental Setup:

Figure: Experimental setup for real-time implementation.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 23

Validation 2: Real-Time Implementation Results Demonstration Video

• This video demonstrates:
• Applicability of the proposed method to real-time control (under 4 ms sampling time).
• Convex input constraints handling.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 24

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

Outline

1 Background and Contributions

2 Proposed Method

3 Experimental Validation

4 Conclusion
Conclusion and Future Work

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 25

Conclusion

Summary of Contributions

• Proposed a constrained optimization-based neuro-adaptive control method.

• Adaptation laws are derived using constrained optimization method.

• The proposed method guarantees the stability of the system and the boundedness of the NN weights.

• Feasibility of the proposed method is validated through numerical simulation and real-time implementation.

Future Work

• Extend the proposed method to state constraints.

• Enhance the robustness and flexibility of the proposed method for various systems.

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 26

Thank you for your attention!

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 27

References I

[1] J. A. Farrell and M. M. Polycarpou, Adaptive Approximation Based Control: Unifying Neural, Fuzzy and
Traditional Adaptive Approximation Approaches (Adaptive and Learning Systems for Signal Processing,
Communications and Control Series). USA: Wiley-Interscience, 2006. [Online]. Available:
https://doi.org/10.1002/0471781819

[2] M. Ryu, N. Monzen, P. Seitter, K. Choi, and C. M. Hackl, “Constrained optimization-based neuro-adaptive
control (conac) for synchronous machine drives under voltage constraints,” TechRxiv, Preprint, Apr. 2025.
[Online]. Available: http://dx.doi.org/10.36227/techrxiv.174585949.94234666/v1

[3] J. Nocedal and S. Wright, Numerical optimization, 2nd ed., ser. Springer series in operations research and
financial engineering. New York, NY: Springer, 2006. [Online]. Available:
https://doi.org/10.1007/978-0-387-40065-5

© Myeongseok Ryu1, Jiyun Kim2, and Kyunghwan Choi1 28

https://doi.org/10.1002/0471781819
http://dx.doi.org/10.36227/techrxiv.174585949.94234666/v1
https://doi.org/10.1007/978-0-387-40065-5

	Background and Contributions
	Introduction to Neuro-Adaptive Control
	Literature Review
	Contributions

	Proposed Method
	Architecture of the Proposed Method
	Problem Formulation
	Adaptation Law Derivation
	Stability Analysis

	Experimental Validation
	Validation Setup
	Validation 1: Simulation Setup
	Validation 1: Simulation Results
	Validation 2: Real-Time Implementation Setup
	Validation 2: Real-Time Implementation Results

	Conclusion
	Conclusion and Future Work

	

	fd@rm@0:

