Imposing a Weight Norm Constraint for Neuro-Adaptive Control IEEE European Control Conference (ECC) 2025

Myeongseok Ryu¹, Jiyun Kim², and Kyunghwan Choi¹

¹Mobility Intelligence and Control Laboratory (MIC Lab) CCS Graduate School of Mobility Korea Advanced Institute of Science and Technology (KAIST)

²Al Graduate School Gwangju Institute of Science and Technology (GIST)

Outline

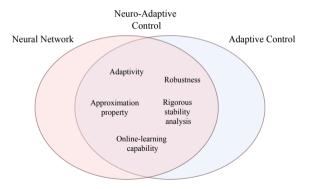
- **Background and Contributions**
- Introduction to Neuro-Adaptive Control
- Literature Review
- ö Contributions
- 2 **Proposed Method**
- Architecture of the Proposed Method
- Problem Formulation
- Adaptation Law Derivation
- Stability Analysis
- **Experimental Validation** 3
 - Validation Setup
 - Validation 1: Simulation Setup
- Validation 1: Simulation Results Validation 2: Real-Time Implementation Setup 0
- Validation 2: Real-Time Implementation Results
- Conclusion
- Conclusion and Future Work

Outline

- **Background and Contributions**
- Introduction to Neuro-Adaptive Control
- Literature Review Contributions

Neuro-Adaptive Control

- Neuro-adaptive control (NAC) is a control strategy that combines neural networks (NNs) with adaptive control [1].
- Features of both NNs and adaptive control can be found in NAC.



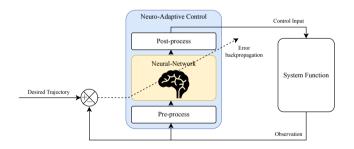


Figure: General framework of neuro-adaptive control (NAC).

Advantages of Neuro-Adaptive Control

• Adaptability: NAC adapts NN weights to changing environments and system dynamics.

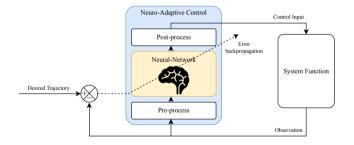


Figure: General framework of neuro-adaptive control (NAC).

- Adaptability: NAC adapts NN weights to changing environments and system dynamics.
- Stability Guarantee: The closed-loop stability is ensured using Lyapunov stability theory.

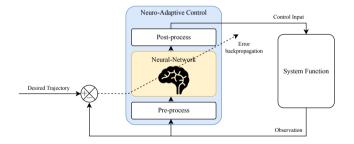


Figure: General framework of neuro-adaptive control (NAC).

- Adaptability: NAC adapts NN weights to changing environments and system dynamics.
- Stability Guarantee: The closed-loop stability is ensured using Lyapunov stability theory.
- Online Learning Capability: NAC adapts in real-time to new data with stability guarantees.

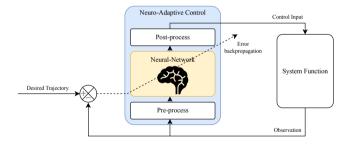


Figure: General framework of neuro-adaptive control (NAC).

- Adaptability: NAC adapts NN weights to changing environments and system dynamics.
- Stability Guarantee: The closed-loop stability is ensured using Lyapunov stability theory.
- Online Learning Capability: NAC adapts in real-time to new data with stability guarantees.
- Robustness: NAC handles uncertainties and disturbances effectively with adaptive control techniques.

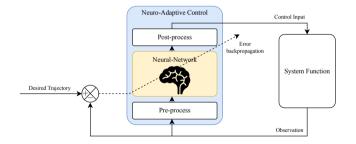


Figure: General framework of neuro-adaptive control (NAC).

Existing Challenges in NAC

Existing Challenges in NAC

1. Weight Boundedness:

- Generally, NN weights are adapted by gradient descent method
 - Objective function typically consists of the control error.
- Hence, the NN weights can grow unbounded, leading to instability (also known as parameter drift).
- Unbounded weights can cause the NN to produce large control inputs, which may lead to following challenges.

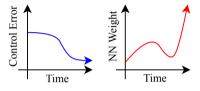


Figure: Divergence of NN weights even with convergent control error.

Existing Challenges in NAC

1. Weight Boundedness:

- Generally, NN weights are adapted by gradient descent method.
 - Objective function typically consists of the control error.
- Hence, the NN weights can grow unbounded, leading to instability (also known as parameter drift).
- Unbounded weights can cause the NN to produce large control inputs, which may lead to following challenges.

2. Control Saturation (unpredictable amplitude of NN outputs):

- Typical issue of control problem in physical systems.
- The NN outputs are unpredictable and not interpretable.
- These features—unbounded NN weights and unpredictable amplitudes—can lead to input saturation.

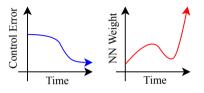


Figure: Divergence of NN weights even with convergent control error.

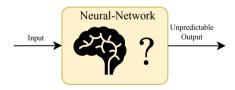


Figure: Unpredictable amplitude of NN outputs.

- 1. Projection Operator for weight boundednss
- 2. σ -modification, and ϵ -modification 3. Additional Control Inputs for control for weight boundednss
 - saturation

- 1. Projection Operator for weight boundednss
 - Projects the NN weights onto a convex set
 - Ensures that the weights remain within a predefined bound.

$$\widehat{\boldsymbol{\theta}} \leftarrow \mathsf{Proj}_{\overline{\boldsymbol{\theta}}}(\widehat{\boldsymbol{\theta}})$$
 (1)

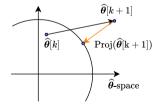


Figure: Projection of NN weights on a convex set

- 2. σ -modification, and ϵ -modification 3. Additional Control Inputs for control for weight boundednss
 - saturation

- 1. Projection Operator for weight boundednss
 - Projects the NN weights onto a convex set
 - Ensures that the weights remain within a predefined bound.

$$\widehat{\boldsymbol{\theta}} \leftarrow \mathsf{Proj}_{\overline{\boldsymbol{\theta}}}(\widehat{\boldsymbol{\theta}})$$
 (1)

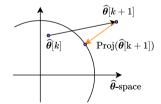


Figure: Projection of NN weights on a convex set

- 2. σ -modification, and ϵ -modification 3. Additional Control Inputs for control for weight boundednss
 - Add a stabilizing term (e.g., $-\sigma \hat{\theta}$) to adaptation law.
 - Construct a invariant set of the NN weights.

$$\frac{\mathrm{d}}{\mathrm{d}t}\widehat{\boldsymbol{\theta}} \leftarrow \frac{\mathrm{d}}{\mathrm{d}t}\widehat{\boldsymbol{\theta}} - \sigma\widehat{\boldsymbol{\theta}} \tag{2}$$

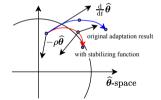


Figure: Adaptation result with stabilizing function (e.g., σ -modification).

- 1. Projection Operator for weight houndednss
 - Projects the NN weights onto a convex set
 - Ensures that the weights remain within a predefined bound.

$$\widehat{\boldsymbol{\theta}} \leftarrow \mathsf{Proj}_{\overline{\boldsymbol{\theta}}}(\widehat{\boldsymbol{\theta}})$$
 (1)

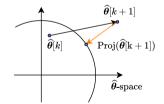


Figure: Projection of NN weights on a convex set

- 2. σ -modification, and ϵ -modification 3. for weight boundednss
 - Add a stabilizing term (e.g., $-\sigma \hat{\theta}$) to adaptation law.
 - Construct a invariant set of the NN weights.

$$\frac{\mathrm{d}}{\mathrm{d}t}\widehat{\boldsymbol{\theta}} \leftarrow \frac{\mathrm{d}}{\mathrm{d}t}\widehat{\boldsymbol{\theta}} - \sigma\widehat{\boldsymbol{\theta}} \tag{2}$$

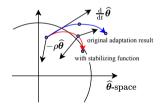


Figure: Adaptation result with stabilizing function (e.g., σ -modification).

- Additional Control Inputs for control saturation
 - Conventional controllers are used to address control input saturation.
 - Barrier Lyapunov function or auxiliary system-based control inputs.
 - In general, nominal models are required.

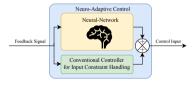


Figure: Control input saturation handling with additional control inputs.

Literature Review Limitations of Existing Methods

Limitation 1: Lack of Optimality

Literature Review Limitations of Existing Methods

Limitation 1: Lack of Optimality

• The existing methods do not guarantee the optimality of the control input.

Limitation 1: Lack of Optimality

- The existing methods do not guarantee the optimality of the control input.
- Projection operator:
 - The projection operator simply projects the NN weights onto a convex set, regardless of the imposed constraints (e.g., weight boundedness or input saturation).
 - Moreover, if the convex set is conservatively defined, the weights may be limited to a suboptimal region.

Limitation 1: Lack of Optimality

- The existing methods do not guarantee the optimality of the control input.
- Projection operator:
 - The projection operator simply projects the NN weights onto a convex set, regardless of the imposed constraints (e.g., weight boundedness or input saturation).
 - Moreover, if the convex set is conservatively defined, the weights may be limited to a suboptimal region.
- σ and ϵ -modification:
 - The stabilizing term biases the NN weights towards the origin.
 - Therefore, the weights converge toward a suboptimal point.

Limitation 1: Lack of Optimality

- The existing methods do not guarantee the optimality of the control input.
- Projection operator:
 - The projection operator simply projects the NN weights onto a convex set, regardless of the imposed constraints (e.g., weight boundedness or input saturation).
 - Moreover, if the convex set is conservatively defined, the weights may be limited to a suboptimal region.
- σ and ϵ -modification:
 - The stabilizing term biases the NN weights towards the origin.
 - Therefore, the weights converge toward a suboptimal point.

- Feedback tracking error for learning is disrupted by additional control inputs.
 - The feedback error does not reflect the error induced by the NN. directly.
 - The additional control inputs may exceeds the input saturation limits, already.

Contributions

Contribution 1: Unified Constrained Optimization Framework

Contribution 2: Online Learning Capability (Stability Guarantees)

Contributions

Contribution 1: Unified Constrained Optimization Framework

- Trajectory tracking and constraint handling are formulated as a unified constrained optimization problem.
- The conventional controllers does not required.
 - Nominal model knowledge is not required for the conventional controllers.

Contribution 2: Online Learning Capability (Stability Guarantees)

Contribution 1: Unified Constrained Optimization Framework

- Trajectory tracking and constraint handling are formulated as a unified constrained optimization problem.
- The conventional controllers does not required.
 - Nominal model knowledge is not required for the conventional controllers.

Contribution 2: Online Learning Capability (Stability Guarantees)

- Stability are rigorously proven using Lyapunov stability theory.
- Hence, online learning with no prior system knowledge is possible.

Contribution 1: Unified Constrained Optimization Framework

- Trajectory tracking and constraint handling are formulated as a unified constrained optimization problem.
- The conventional controllers does not required.
 - Nominal model knowledge is not required for the conventional controllers.

Contribution 2: Online Learning Capability (Stability Guarantees)

- Stability are rigorously proven using Lyapunov stability theory.
- Hence, online learning with no prior system knowledge is possible.

- Weight and control input constraints are explicitly considered in the optimization problem.
- Any combination of convex input constraints can be handled.

Outline

- **Proposed Method**
 - Architecture of the Proposed Method Problem Formulation Adaptation Law Derivation
 - Stability Analysis .

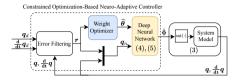


Figure: Architecture of the proposed method.

Target Two-link Robotic Manipulator System:

- Control input saturation function sat(·).
- Desired trajectory q_d is given.

$$\mathbf{M}\ddot{\mathbf{q}} + \mathbf{V}_{m}\dot{\mathbf{q}} + \mathbf{F} + \mathbf{G} + \mathbf{\tau}_{d} = \operatorname{sat}(\mathbf{\tau})$$
 (3)

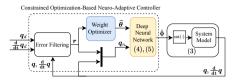


Figure: Architecture of the proposed method.

Target Two-link Robotic Manipulator System:

- Control input saturation function sat(·).
- Desired trajectory q_d is given.

$$\mathbf{M}\ddot{\mathbf{q}} + \mathbf{V}_m \dot{\mathbf{q}} + \mathbf{F} + \mathbf{G} + \mathbf{\tau}_d = \operatorname{sat}(\mathbf{\tau})$$
 (3)

Control Input:

- NN's output Φ is used as the control input.
- Consists of the estimated NN weights $\widehat{\theta}$.

$$\boldsymbol{\tau} := \boldsymbol{\Phi}(\boldsymbol{q}_n; \widehat{\boldsymbol{\theta}}) \tag{4}$$

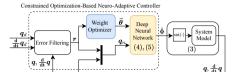


Figure: Architecture of the proposed method.

Target Two-link Robotic Manipulator System:

- Control input saturation function sat(·).
- Desired trajectory q_d is given.

$$M\ddot{q} + V_m\dot{q} + F + G + \tau_d = sat(\tau)$$
 (3)

Control Input:

- NN's output Φ is used as the control input.
- Consists of the estimated NN weights $\widehat{\theta}$.

$$\boldsymbol{\tau} := \boldsymbol{\Phi}(\boldsymbol{q}_n; \widehat{\boldsymbol{\theta}}) \tag{4}$$

Deep Neural Network (DNN):

- k layers with weights $\widehat{\theta}_i := \text{vec}(\widehat{\boldsymbol{W}}_i)$.
- Activation function: $\phi(\cdot) := tanh(\cdot)$.

$$\Phi(\mathbf{q}_n; \widehat{\boldsymbol{\theta}}) := \begin{cases} \widehat{\boldsymbol{W}}_i^{\top} \phi_i(\widehat{\boldsymbol{\Phi}}_{i-1}), & i \in \{1, \dots, k\}, \\ \widehat{\boldsymbol{W}}_0^{\top} \mathbf{q}_n, & i = 0, \end{cases}$$
(5)

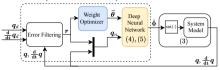


Figure: Architecture of the proposed method.

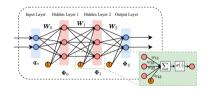


Figure: Architecture of the DNN.

Notations: $q \in \mathbb{R}^n$: Joint position, M: Inertia matrix, C: Coriolis matrix, G: Gravity vector, τ : Control input, τ_d : Disturbance.

Optimization Problem Statement:

- Find NN weights $\widehat{\theta}$,
- That minimize objective function $J(\cdot)$,

$$J(\mathbf{r};\widehat{\boldsymbol{\theta}}) := \frac{1}{2} \mathbf{r}^{\top} \mathbf{r}. \tag{6}$$

- where $r := \frac{d}{dt}e + \Lambda e$ is filtered tracking error,
- while satisfying the following constraints:
 - Boundedness of the NN weights $\widehat{\theta}$.
 - Saturation of the control input au.

Optimization Problem Statement:

- Find NN weights $\widehat{\theta}$,
- That minimize objective function $J(\cdot)$,

$$J(\mathbf{r};\widehat{\boldsymbol{\theta}}) := \frac{1}{2} \mathbf{r}^{\top} \mathbf{r}. \tag{6}$$

- where $r := \frac{d}{dt} e + \Lambda e$ is filtered tracking error,
- while satisfying the following constraints:
 - Boundedness of the NN weights $\widehat{\theta}$.
 - Saturation of the control input au.

Considered Constraints

Weight Boundedness for Each Layer:

$$c_{\theta_i}(\widehat{\boldsymbol{\theta}}) := \|\widehat{\boldsymbol{\theta}}_i\|^2 - \overline{\theta_i}^2 \le 0, \forall i \in \{0, \dots, k\}$$
 (7)

- Convex control Input Saturation:
 - Input bound constraint for each control input:

$$c_{\overline{\tau}_i}(\widehat{\boldsymbol{\theta}}) := \tau_i - \overline{\tau_i} \leq 0, \quad c_{\underline{\tau}_i}(\widehat{\boldsymbol{\theta}}) := \underline{\tau_i} - \tau_i \leq 0 \quad (8)$$

Input norm constraint:

$$c_{\tau}(\widehat{\boldsymbol{\theta}}) := \|\boldsymbol{\tau}\|^{2} - \overline{\tau}^{2} \le 0 \tag{9}$$

Original Optimization Problem

- Constrained optimization problem to minimize the tracking error.
- Inequality constraints $c_i(\widehat{\theta}) \leq 0$ for $j \in \mathcal{I}$.

$$\min_{\widehat{\boldsymbol{\theta}}} J(\boldsymbol{r}; \widehat{\boldsymbol{\theta}})$$
 s.t. $c_j(\widehat{\boldsymbol{\theta}}) \leq 0, \forall j \in \mathcal{I}$

Original Optimization Problem

- Constrained optimization problem to minimize the tracking error.
- Inequality constraints $c_j(\widehat{\theta}) \leq 0$ for $j \in \mathcal{I}$.

$$\min_{\widehat{\theta}} J(r; \widehat{\theta}) \tag{10}$$

s.t.
$$c_j(\widehat{m{ heta}}) \leq 0, orall j \in \mathcal{I}$$

Define Lagrangian Function

$$L(\mathbf{r},\widehat{\boldsymbol{\theta}},[\lambda_j]_{j\in\mathcal{I}}) := J(\mathbf{r};\widehat{\boldsymbol{\theta}}) + \sum_{j\in\mathcal{I}} \lambda_j c_j(\widehat{\boldsymbol{\theta}})$$
(11)

Original Optimization Problem

- Constrained optimization problem to minimize the tracking error.
- Inequality constraints $c_j(\widehat{\theta}) \leq 0$ for $j \in \mathcal{I}$.

$$\min_{\widehat{\boldsymbol{\theta}}} J(r; \widehat{\boldsymbol{\theta}}) \tag{10}$$

s.t. $c_j(\widehat{oldsymbol{ heta}}) \leq 0, orall j \in \mathcal{I}$

Define Lagrangian Function

$$L(\mathbf{r}, \widehat{\boldsymbol{\theta}}, [\lambda_j]_{j \in \mathcal{I}}) := J(\mathbf{r}; \widehat{\boldsymbol{\theta}}) + \sum_{j \in \mathcal{I}} \lambda_j c_j(\widehat{\boldsymbol{\theta}})$$
(11)

Dual Problem

- The dual problem is to minimize the Lagrangian function with respect to the NN weights $\hat{\theta}$, while maximizing with respect to the Lagrange multipliers λ_j .
- The Lagrange multipliers λ_j are non-negative, i.e., $\lambda_j \geq 0$.

$$\min_{\widehat{\boldsymbol{\theta}}} \max_{[\lambda_j]_{j \in \mathcal{I}}} L(\boldsymbol{r}, \widehat{\boldsymbol{\theta}}, [\lambda_j]_{j \in \mathcal{I}})$$

(12)

Adaptation Law Derivation Gradient Descent/Ascent Method

To solve the dual problem,

$$\min_{\widehat{\boldsymbol{\theta}}} \max_{[\lambda_j]_{j \in \mathcal{I}}} L(\boldsymbol{r}, \widehat{\boldsymbol{\theta}}, [\lambda_j]_{j \in \mathcal{I}}), \tag{13}$$

the first-order gradient descent/ascent method is used to derive the adaptation law.

Adaptation Law

 α : adaptation gain (learning rate), β_i : update rate of the Lagrange multipliers.

Adaptation Law Derivation Gradient Descent/Ascent Method

To solve the dual problem,

$$\min_{\widehat{\boldsymbol{\theta}}} \max_{[\lambda_j]_{j \in \mathcal{I}}} L(\boldsymbol{r}, \widehat{\boldsymbol{\theta}}, [\lambda_j]_{j \in \mathcal{I}}), \tag{13}$$

the first-order gradient descent/ascent method is used to derive the adaptation law.

Adaptation Law

Gradient Descent Method for weights $\widehat{\theta}$:

$$\frac{\mathrm{d}}{\mathrm{d}t}\widehat{\theta} = -\alpha \frac{\partial L}{\partial \widehat{\theta}} = -\alpha \left(\frac{\partial J}{\partial \widehat{\theta}} + \sum_{j \in \mathcal{I}} \lambda_j \frac{\partial c_j}{\partial \widehat{\theta}} \right), \tag{14}$$

 α : adaptation gain (learning rate), β_i : update rate of the Lagrange multipliers.

Adaptation Law Derivation Gradient Descent/Ascent Method

To solve the dual problem,

$$\min_{\widehat{\boldsymbol{\theta}}} \max_{[\lambda_j]_{j \in \mathcal{I}}} L(\boldsymbol{r}, \widehat{\boldsymbol{\theta}}, [\lambda_j]_{j \in \mathcal{I}}), \tag{13}$$

the first-order gradient descent/ascent method is used to derive the adaptation law.

Adaptation Law

Gradient Descent Method for weights $\widehat{\theta}$:

$$\frac{\mathrm{d}}{\mathrm{d}t}\widehat{\theta} = -\alpha \frac{\partial L}{\partial \widehat{\theta}} = -\alpha \left(\frac{\partial J}{\partial \widehat{\theta}} + \sum_{j \in \mathcal{I}} \frac{\lambda_j}{\partial \widehat{\theta}} \frac{\partial c_j}{\partial \widehat{\theta}} \right), \tag{14}$$

Gradient Ascent Method for Lagrange multipliers $\lambda_j, \forall j \in \mathcal{I}$:

$$\frac{\mathrm{d}}{\mathrm{d}t} \lambda_{j} = \beta_{j} \frac{\partial L}{\partial \lambda_{j}} = \beta_{j} c_{j}, \tag{15}$$

Adaptation Law Derivation Gradient Descent/Ascent Method

To solve the dual problem,

$$\min_{\widehat{\boldsymbol{\theta}}} \max_{[\lambda_j]_{j \in \mathcal{I}}} L(\boldsymbol{r}, \widehat{\boldsymbol{\theta}}, [\lambda_j]_{j \in \mathcal{I}}), \tag{13}$$

the first-order gradient descent/ascent method is used to derive the adaptation law.

Adaptation Law

Gradient Descent Method for weights $\widehat{\theta}$:

$$\frac{\mathrm{d}}{\mathrm{d}t}\widehat{\theta} = -\alpha \frac{\partial L}{\partial \widehat{\theta}} = -\alpha \left(\frac{\partial J}{\partial \widehat{\theta}} + \sum_{j \in \mathcal{I}} \lambda_j \frac{\partial c_j}{\partial \widehat{\theta}} \right), \tag{14}$$

Gradient Ascent Method for Lagrange multipliers $\lambda_j, \forall j \in \mathcal{I}$:

$$\frac{\mathrm{d}}{\mathrm{d}t} \lambda_j = \beta_j \frac{\partial L}{\partial \lambda_j} = \beta_j c_j, \tag{15}$$

For non-negativity of the Lagrange multipliers,

$$\lambda_j \leftarrow \max(\lambda_j, 0).$$
 (16)

 α : adaptation gain (learning rate), β_j : update rate of the Lagrange multipliers.

Stability Analysis Lyapunov Stability Analysis

Theorem 1 [2]

For the dynamical system described in (3), the neuro-adaptive controller in (4) with the weight adaptation laws in (14), (15) and (16) ensure the boundedness of the filtered error r and the weight estimate $\hat{\theta}$, under the control input constraintssatisfying Assumption 1 and 2. This holds under the weight norm constraint (7).

The constraint functions $c_i(\widehat{\theta}), \forall i \in \mathcal{I}$, are convex in the τ -space and satisfy $c_i(\widehat{\theta}) < 0$ and $c_i(\theta^*) < 0$.

Assumption 2. Linear Independence Constraint Qualification (LICQ)

The selected constraints satisfy the Linear Independence Constraint Qualification (LICQ) [3, Chap. 12 Def. 12.1].

Proof of Theorem 1 is omitted due to space limitations. The detailed proof can be found in [2].

Outline

- - **Experimental Validation**
 - Validation Setup Validation 1: Simulation Setup
 - - Validation 1: Simulation Results Validation 2: Real-Time Implementation Setup
 - . • Validation 2: Real-Time Implementation Results

Validation Setup

Validation 1: Simulation of a Two-link Robotic Manipulator System

- Weight norm constraint is considered.
- Single-hidden layer NN is used.
- Parameter dependencies are investigated, by varying crucial parameters.

Validation 2: Real-time Implementation on a Two-link Robotic Manipulator System

- Weight norm constraint and input saturation constraints are considered.
- 2 hidden layer NN is used.
- Constraint handling process is compared.

Target System:

$$m{M}\ddot{m{q}} + m{V}_m \dot{m{q}} + m{F} + m{G} + m{ au}_d = m{ au}$$

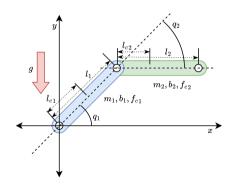


Figure: Two-link robotic manipulator model.

Desired Trajectory:

$$\boldsymbol{q}_{d} = \begin{pmatrix} q_{d1} \\ q_{d2} \end{pmatrix} = \begin{pmatrix} +\cos(\frac{\pi}{2}t) + 1 \\ -\cos(\frac{\pi}{2}t) - 1 \end{pmatrix}. \tag{17}$$

System Model Parameters:

Table: System model parameters.

Symbol	Description	Link 1	Link 2
m_p	Mass	23.902 kg	3.88 kg
I_p	Length	0.45 m	0.45 m
I _{cp}	СОМ	0.091 m	0.048 m
b_p	Viscous coef.	2.288 Nms	0.172 Nms
f _{cp}	Friction coef.	7.17 Nm	1.734 Nm

Validation 1: Simulation Setup Controllers for Comparative Study

- NAC-CO denotes the proposed controller based on constrained optimization .
- For NAC-L2 and NAC-eMod, the stabilizing terms $-\sigma \hat{\theta}$ and $\rho || \mathbf{r} || \hat{\theta}$ ensures the weights boundedness, respectively.

Name	Description	Adaptation Law
NAC-L2	NAC with L_2 -regularization (equal to σ -modification)	$\frac{\mathrm{d}}{\mathrm{d}t}\widehat{\boldsymbol{\theta}} = -\alpha \left(\frac{\partial J}{\partial \widehat{\boldsymbol{\theta}}} + \sigma \widehat{\boldsymbol{\theta}} \right)$
	$(\sigma \text{ stabilizes } \widehat{\theta} \text{ towards origin})$	(00 /
NAC-eMod	NAC with ϵ -modification	$rac{\mathrm{d}}{\mathrm{d}t}\widehat{m{ heta}} = -lpha\left(rac{\partial J}{\partial\widehat{m{ heta}}} + m{ ho}\ \widetilde{m{ heta}}\ \widehat{m{ heta}} ight)$
	$(\rho \text{ stabilizes proportionally to filtered error } r)$	(00
NAC-CO	Constrained Optimization-based NAC	$\frac{\mathrm{d}}{\mathrm{d}t}\widehat{\boldsymbol{\theta}} = -\alpha \left(\frac{\partial J}{\partial \widehat{\boldsymbol{\theta}}} + \sum_{j \in \mathcal{I}} \lambda_j \frac{\partial c_j}{\partial \widehat{\boldsymbol{\theta}}} \right)$
(proposed)	$(eta_j$ determines λ_j adaptation speed)	$rac{\mathrm{d}}{\mathrm{d}t}\lambda_j = rac{oldsymbol{eta}_j}{oldsymbol{c}_j}$, and $\lambda_j \leftarrow max(\lambda_j,0)$

- NAC-CO denotes the proposed controller based on constrained optimization .
- For NAC-L2 and NAC-eMod, the stabilizing terms $-\sigma \hat{\theta}$ and $\rho || \mathbf{r} || \hat{\theta}$ ensures the weights boundedness, respectively.

Name	Description	Adaptation Law	
NAC-L2	NAC with L_2 -regularization (equal to σ -modification)	$\frac{\mathrm{d}}{\mathrm{d}t}\widehat{\boldsymbol{\theta}} = -\alpha \left(\frac{\partial J}{\partial \widehat{\boldsymbol{\theta}}} + \boldsymbol{\sigma}\widehat{\boldsymbol{\theta}} \right)$	
NAC-L2	$(\sigma$ stabilizes $\widehat{oldsymbol{ heta}}$ towards origin)		
NAC-eMod	NAC with ϵ -modification	$rac{\mathrm{d}}{\mathrm{d}t}\widehat{oldsymbol{ heta}} = -lpha\left(rac{\partial J}{\partial\widehat{oldsymbol{ heta}}} + oldsymbol{ ho}\ \widetilde{oldsymbol{ heta}}\ \widehat{oldsymbol{ heta}} ight)$	
	$(\rho$ stabilizes proportionally to filtered error r)	$\frac{\mathrm{d}t}{\mathrm{d}t}\boldsymbol{\theta} = -\alpha \left(\frac{\partial}{\partial \widehat{\boldsymbol{\theta}}} + \frac{\rho}{\rho} \ \mathbf{r}\ \boldsymbol{\theta} \right)$	
NAC-CO	Constrained Optimization-based NAC	$\frac{\mathrm{d}}{\mathrm{d}t}\widehat{\boldsymbol{\theta}} = -\alpha \left(\frac{\partial J}{\partial \widehat{\boldsymbol{\theta}}} + \sum_{j \in \mathcal{I}} \lambda_j \frac{\partial c_j}{\partial \widehat{\boldsymbol{\theta}}} \right)$	
(proposed)	$(eta_j$ determines λ_j adaptation speed)	$rac{\mathrm{d}}{\mathrm{d}t}\lambda_j = rac{eta_j}{c_j}$, and $\lambda_j \leftarrow \max(\lambda_j,0)$	

Simulation Objective

By varying the parameters, i.e., β_i , σ , and ρ , the parameter dependencies will be investigated.

• The parameters ranged from 0.001 to 1 across 10 samples.

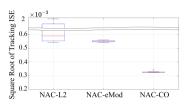


Figure: Box-and-whisker plots of the tracking error ISE.

	NAC-L2	NAC-eMod	NAC-CO (proposed)
Maximum	11.1753×10^{-3}	0.5603×10^{-3}	0.3439×10^{-3}
Median	0.5898×10^{-3}	0.5519×10^{-3}	0.3240×10^{-3}
Minimum	0.5434×10^{-3}	0.5434×10^{-3}	0.3235×10^{-3}

- The parameters ranged from 0.001 to 1 across 10 samples.
- NAC-L2 shows the worst performance with high variance.

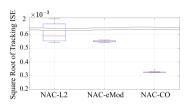


Figure: Box-and-whisker plots of the tracking error ISE.

	NAC-L2	NAC-eMod	NAC-CO (proposed)
Maximum	11.1753×10^{-3}	0.5603×10^{-3}	0.3439×10^{-3}
Median	0.5898×10^{-3}	0.5519×10^{-3}	0.3240×10^{-3}
Minimum	0.5434×10^{-3}	0.5434×10^{-3}	0.3235×10^{-3}

- The parameters ranged from 0.001 to 1 across 10 samples.
- NAC-L2 shows the worst performance with high variance.
- NAC-CO (proposed) shows the best performance and lowest variance.

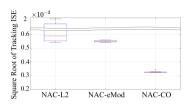


Figure: Box-and-whisker plots of the tracking error ISE.

	NAC-L2	NAC-eMod	NAC-CO (proposed)
Maximum	11.1753×10^{-3}	0.5603×10^{-3}	0.3439×10^{-3}
Median	0.5898×10^{-3}	0.5519×10^{-3}	0.3240×10^{-3}
Minimum	0.5434×10^{-3}	0.5434×10^{-3}	0.3235×10^{-3}

- The parameters ranged from 0.001 to 1 across 10 samples.
- NAC-L2 shows the worst performance with high variance.
- NAC-CO (proposed) shows the best performance and lowest variance.
- This result is because,

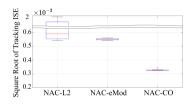


Figure: Box-and-whisker plots of the tracking error ISE.

	NAC-L2	NAC-eMod	NAC-CO (proposed)
Maximum	11.1753×10^{-3}	0.5603×10^{-3}	0.3439×10^{-3}
Median	0.5898×10^{-3}	0.5519×10^{-3}	0.3240×10^{-3}
Minimum	0.5434×10^{-3}	0.5434×10^{-3}	0.3235×10^{-3}

- The parameters ranged from 0.001 to 1 across 10 samples.
- NAC-L2 shows the worst performance with high variance.
- NAC-CO (proposed) shows the best performance and lowest variance.
- This result is because,
 - NAC-L2 and NAC-eMod are biased towards the origin. $\frac{\mathrm{d}}{\mathrm{d}t}\widehat{\theta} = -\alpha(\frac{\partial J}{\partial \widehat{\theta}} + \sigma\widehat{\theta}) \text{ (NAC-L2) or } + \rho \|\mathbf{r}\|\widehat{\boldsymbol{\theta}} \text{ (NAC-eMod),}$ proportionally to σ and ρ , respectively.

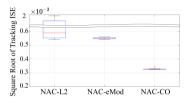


Figure: Box-and-whisker plots of the tracking error ISE.

	NAC-L2	NAC-eMod	NAC-CO (proposed)
Maximum	11.1753×10^{-3}	0.5603×10^{-3}	0.3439×10^{-3}
Median	0.5898×10^{-3}	0.5519×10^{-3}	0.3240×10^{-3}
Minimum	0.5434×10^{-3}	0.5434×10^{-3}	0.3235×10^{-3}

- The parameters ranged from 0.001 to 1 across 10 samples.
- NAC-L2 shows the worst performance with high variance.
- NAC-CO (proposed) shows the best performance and lowest variance.
- This result is because.
 - NAC-L2 and NAC-eMod are biased towards the origin. $\frac{\mathrm{d}}{\mathrm{d}t}\widehat{\boldsymbol{\theta}} = -\alpha(\frac{\partial J}{\partial \widehat{\boldsymbol{\theta}}} + \sigma\widehat{\boldsymbol{\theta}})$ (NAC-L2) or $+\rho \|\boldsymbol{r}\|\widehat{\boldsymbol{\theta}}$ (NAC-eMod), proportionally to σ and ρ , respectively.
 - $-\lambda_j \frac{\partial c_j}{\partial \hat{\boldsymbol{\rho}}}$ in NAC-CO (proposed) (i.e., $\frac{\mathrm{d}}{\mathrm{d}t} \hat{\boldsymbol{\theta}} = -\alpha (\frac{\partial J}{\partial \hat{\boldsymbol{\rho}}} + \lambda_j \frac{\partial c_j}{\partial \hat{\boldsymbol{\rho}}})$) disappears when constraints are inactive (i.e., $c_i < 0$, and $\lambda = \beta_i c_i$ and $\lambda_i \leftarrow \max(\lambda_i, 0)$.

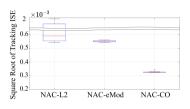
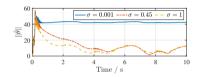
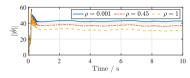


Figure: Box-and-whisker plots of the tracking error ISE.

	NAC-L2	NAC-eMod	NAC-CO (proposed)
Maximum	11.1753×10^{-3}	0.5603×10^{-3}	0.3439×10^{-3}
Median	0.5898×10^{-3}	0.5519×10^{-3}	0.3240×10^{-3}
Minimum	0.5434×10^{-3}	0.5434×10^{-3}	0.3235×10^{-3}

Validation 1: Simulation Results Weight Norms





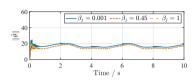


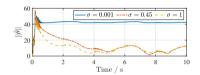
Figure: Weight norms of NAC-L2

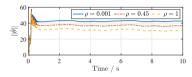
Figure: Weight norms of NAC-eMod

Figure: Weight norms of NAC-CO (proposed)

• NAC-CO (proposed) showed the weight norms are bounded under pre-defined constraint $\bar{\theta}=20$.

Validation 1: Simulation Results Weight Norms





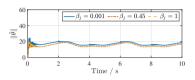
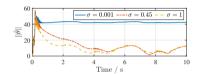


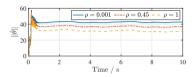
Figure: Weight norms of NAC-L2

Figure: Weight norms of NAC-eMod

Figure: Weight norms of NAC-CO (proposed)

- NAC-CO (proposed) showed the weight norms are bounded under pre-defined constraint $\overline{\theta} = 20$.
- NAC-L2 and NAC-eMod showed the bounded weight norms, but they depended on the parameters σ and ρ , respectively.





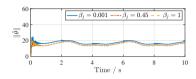


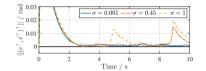
Figure: Weight norms of NAC-L2

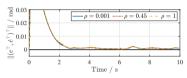
Figure: Weight norms of NAC-eMod

Figure: Weight norms of NAC-CO (proposed)

- NAC-CO (proposed) showed the weight norms are bounded under pre-defined constraint $\overline{\theta}=20$.
- NAC-L2 and NAC-eMod showed the bounded weight norms, but they depended on the parameters σ and ρ , respectively.
- In other words, NAC-CO tracked the desired trajectory with a smaller weight norm than NAC-L2 and NAC-eMod.

Validation 1: Simulation Results Tracking Performance





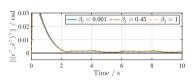


Figure: Tracking error of NAC-L2

Figure: Tracking error of NAC-eMod

Figure: Tracking error of NAC-CO (proposed)

- NAC-CO (proposed) outperformed NAC-L2 and NAC-eMod in terms of tracking performance.
- As the weights are biased towards the origin proportionally to the parameters σ and ρ in NAC-L2 and NAC-eMod, respectively, the tracking performance of NAC-L2 and NAC-eMod deteriorated, as approaching toward suboptimal points.

Validation 2: Real-Time Implementation Setup

Controller:

- OpenCR 1.0 Board
- Control loop at 250 Hz (4 ms sampling time)

Input Saturation Constraints:

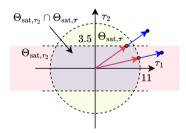


Figure: Input Saturation Function.

Experimental Setup:

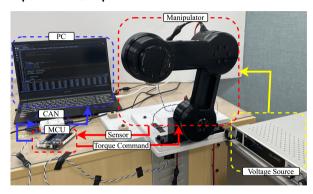


Figure: Experimental setup for real-time implementation.

Validation 2: Real-Time Implementation Results Demonstration Video

- This video demonstrates:
 - Applicability of the proposed method to real-time control (under 4 ms sampling time).
 - Convex input constraints handling.

Outline

- 1 Background and Contributions
- 2 Proposed Method

3 Experimental Validation

- 4 Conclusion
- Conclusion and Future Work

Summary of Contributions

- Proposed a constrained optimization-based neuro-adaptive control method.
- Adaptation laws are derived using constrained optimization method.
- The proposed method guarantees the stability of the system and the boundedness of the NN weights.
- Feasibility of the proposed method is validated through numerical simulation and real-time implementation.

Future Work

- Extend the proposed method to state constraints.
- Enhance the robustness and flexibility of the proposed method for various systems.

Thank you for your attention!

- [1] J. A. Farrell and M. M. Polycarpou, Adaptive Approximation Based Control: Unifying Neural, Fuzzy and Traditional Adaptive Approximation Approaches (Adaptive and Learning Systems for Signal Processing, Communications and Control Series). USA: Wiley-Interscience, 2006. [Online]. Available: https://doi.org/10.1002/0471781819
- [2] M. Ryu, N. Monzen, P. Seitter, K. Choi, and C. M. Hackl, "Constrained optimization-based neuro-adaptive control (conac) for synchronous machine drives under voltage constraints," TechRxiv, Preprint, Apr. 2025. [Online]. Available: http://dx.doi.org/10.36227/techrxiv.174585949.94234666/v1
- [3] J. Nocedal and S. Wright, Numerical optimization, 2nd ed., ser, Springer series in operations research and financial engineering. New York, NY: Springer, 2006. [Online]. Available: https://doi.org/10.1007/978-0-387-40065-5