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Introduction to Neuro-Adaptive Control What is Neuro-Adaptive Control?

Neuro-Adaptive Control

• Neuro-adaptive control (NAC) is a control strategy that combines neural networks (NNs) with adaptive control [1].

• Features of both NNs and adaptive control can be found in NAC.
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Introduction to Neuro-Adaptive Control What is Neuro-Adaptive Control?

Advantages of Neuro-Adaptive Control

• Adaptability: NAC adapts NN weights to changing environments and system dynamics.
• Stability Guarantee: The closed-loop stability is ensured using Lyapunov stability theory.
• Online Learning Capability: NAC adapts in real-time to new data with stability guarantees.
• Robustness: NAC handles uncertainties and disturbances effectively with adaptive control techniques.
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Neuro-Adaptive Control

Figure: General framework of neuro-adaptive control (NAC).
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Introduction to Neuro-Adaptive Control What is Neuro-Adaptive Control?

Existing Challenges in NAC

1. Weight Boundedness:
• Generally, NN weights are adapted by gradient descent

method.

• Objective function typically consists of the control error.

• Hence, the NN weights can grow unbounded, leading to
instability (also known as parameter drift).

• Unbounded weights can cause the NN to produce large
control inputs, which may lead to following challenges.
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Figure: Divergence of NN weights even with convergent
control error.

2. Control Saturation (unpredictable amplitude of NN outputs):

• Typical issue of control problem in physical systems.

• The NN outputs are unpredictable and not interpretable.

• These features—unbounded NN weights and
unpredictable amplitudes—can lead to input saturation.
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Figure: Unpredictable amplitude of NN outputs.
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Literature Review

1. Projection Operator for weight
boundednss

• Projects the NN weights onto a
convex set.

• Ensures that the weights remain
within a predefined bound.

θ̂ ← Projθ(θ̂) (1)

2. σ-modification, and ϵ-modification
for weight boundednss

• Add a stabilizing term (e.g., −σθ̂)
to adaptation law.

• Construct a invariant set of the NN
weights.

d
dt θ̂ ←

d
dt θ̂ − σθ̂ (2)

3. Additional Control Inputs for control
saturation

• Conventional controllers are used to
address control input saturation.

• Barrier Lyapunov function or
auxiliary system-based control
inputs.

• In general, nominal models are
required.

Figure: Projection of NN weights on a
convex set.

with stabilizing function

original adaptation result

Figure: Adaptation result with stabilizing
function (e.g., σ-modification).
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Neural-Network
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Figure: Control input saturation handling
with additional control inputs.
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Literature Review Limitations of Existing Methods

Limitation 1: Lack of Optimality

• The existing methods do not guarantee the optimality of the control input.
• Projection operator:

• The projection operator simply projects the NN weights onto a convex set, regardless of the imposed constraints
(e.g., weight boundedness or input saturation).

• Moreover, if the convex set is conservatively defined, the weights may be limited to a suboptimal region.

• σ- and ϵ-modification:
• The stabilizing term biases the NN weights towards the origin.
• Therefore, the weights converge toward a suboptimal point.

Limitation 2: Disruption of Learning Process by Additional Control Inputs

• Feedback tracking error for learning is disrupted by additional control inputs.
• The feedback error does not reflect the error induced by the NN, directly.
• The additional control inputs may exceeds the input saturation limits , already.
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Contributions

Contribution 1: Unified Constrained Optimization Framework

• Trajectory tracking and constraint handling are formulated as a unified constrained optimization problem.
• The conventional controllers does not required.

• Nominal model knowledge is not required for the conventional controllers.

Contribution 2: Online Learning Capability (Stability Guarantees)

• Stability are rigorously proven using Lyapunov stability theory.

• Hence, online learningwith no prior system knowledge is possible.

Contribution 3: Weight and Control Input Constraint Handling

• Weight and control input constraints are explicitly considered in the optimization problem.

• Any combination of convex input constraints can be handled.
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Architecture of the Proposed Method

Target Two-link Robotic Manipulator System:
• Control input saturation function sat(·).

• Desired trajectory qd is given.

Mq̈ + Vmq̇ + F + G + τ d = sat(τ ) (3)

Control Input:
• NN’s output Φ is used as the control input.

• Consists of the estimated NN weights θ̂.

τ := Φ(qn; θ̂) (4)

Deep Neural Network (DNN):

• k layers with weights θ̂i := vec(Ŵ i ).

• Activation function: ϕ(·) := tanh(·).

Φ(qn; θ̂) :=

{
Ŵ

⊤
i ϕi (Φ̂i−1), i ∈ {1, . . . , k},

Ŵ
⊤
0 qn, i = 0,

(5)

Weight
Optimizer

Deep 
Neural

Network
System
Model

Error Filtering

Constrained Optimization-Based Neuro-Adaptive Controller

Figure: Architecture of the proposed method.

Output LayerHidden Layer 1 Hidden Layer 2Input Layer

Figure: Architecture of the DNN.

Notations: q ∈ Rn: Joint position, M: Inertia matrix, C : Coriolis matrix, G : Gravity vector, τ : Control input, τd : Disturbance.
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Problem Formulation Optimization Problem

Optimization Problem Statement:
• Find NN weights θ̂,

• That minimize objective function J(·),

J(r ; θ̂) :=
1
2
r⊤r . (6)

• where r := d
dt e + Λe is filtered tracking error,

• while satisfying the following constraints:
• Boundedness of the NN weights θ̂.
• Saturation of the control input τ .

Considered Constraints

• Weight Boundedness for Each Layer:

cθi (θ̂) := ∥θ̂i∥2 − θi
2 ≤ 0, ∀i ∈ {0, . . . , k} (7)

• Convex control Input Saturation:

• Input bound constraint for each control input:

cτ i
(θ̂) := τi − τi ≤ 0, cτ i

(θ̂) := τi − τi ≤ 0 (8)

• Input norm constraint:

cτ (θ̂) := ∥τ∥2 − τ
2 ≤ 0 (9)

Notations: Λ ∈ Rn×n
>0 : filtering matrix
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Problem Formulation Optimization Problem

Original Optimization Problem

• Constrained optimization problem to minimize the tracking error.
• Inequality constraints cj (θ̂) ≤ 0 for j ∈ I.

min
θ̂
J(r ; θ̂)

s.t. cj (θ̂) ≤ 0,∀j ∈ I
(10)

Define Lagrangian Function

L(r , θ̂, [λj ]j∈I) := J(r ; θ̂) +
∑
j∈I

λjcj (θ̂) (11)

Dual Problem

• The dual problem is to minimize the Lagrangian function with respect to the NN weights θ̂, while maximizing
with respect to the Lagrange multipliers λj .

• The Lagrange multipliers λj are non-negative, i.e., λj ≥ 0.

min
θ̂

max
[λj ]j∈I

L(r , θ̂, [λj ]j∈I) (12)
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(10)

Define Lagrangian Function

L(r , θ̂, [λj ]j∈I) := J(r ; θ̂) +
∑
j∈I

λjcj (θ̂) (11)

Dual Problem

• The dual problem is to minimize the Lagrangian function with respect to the NN weights θ̂, while maximizing
with respect to the Lagrange multipliers λj .

• The Lagrange multipliers λj are non-negative, i.e., λj ≥ 0.

min
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Adaptation Law Derivation Gradient Descent/Ascent Method

To solve the dual problem,
min
θ̂

max
[λj ]j∈I

L(r , θ̂, [λj ]j∈I), (13)

the first-order gradient descent/ascent method is used to derive the adaptation law.

Adaptation Law

Gradient Descent Method for weights θ̂:

d
dt θ̂ = −α ∂L

∂θ̂
= −α

(
∂J

∂θ̂
+

∑
j∈I λj

∂cj

∂θ̂

)
, (14)

Gradient Ascent Method for Lagrange multipliers λj , ∀j ∈ I:
d
dt λj = βj

∂L
∂λj

= βjcj , (15)

For non-negativity of the Lagrange multipliers,

λj ← max(λj , 0). (16)

α: adaptation gain (learning rate), βj : update rate of the Lagrange multipliers.
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Stability Analysis Lyapunov Stability Analysis

Theorem 1 [2]

For the dynamical system described in (3), the neuro-adaptive controller in (4) with the weight adaptation laws in
(14), (15) and (16) ensure the boundedness of the filtered error r and the weight estimate θ̂, under the control
input constraintssatisfying Assumption 1 and 2. This holds under the weight norm constraint (7).

Assumption 1 (Convex Input Constraint)

The constraint functions cj (θ̂), ∀j ∈ I, are convex in the τ -space and satisfy cj (θ̂) ≤ 0 and cj (θ
∗) ≤ 0.

Assumption 2, Linear Independence Constraint Qualification (LICQ)

The selected constraints satisfy the Linear Independence Constraint Qualification (LICQ) [3, Chap. 12 Def. 12.1].

Proof of Theorem 1 is omitted due to space limitations. The detailed proof can be found in [2].
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Validation Setup

Validation 1: Simulation of a Two-link Robotic Manipulator System

• Weight norm constraint is considered.

• Single-hidden layer NN is used.

• Parameter dependencies are investigated, by varying crucial parameters.

Validation 2: Real-time Implementation on a Two-link Robotic Manipulator System

• Weight norm constraint and input saturation constraints are considered.

• 2 hidden layer NN is used.

• Constraint handling process is compared.
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Validation 1: Simulation Setup Two-Link Robotic Manipulator

Target System:

Mq̈ + Vmq̇ + F + G + τ d = τ

Figure: Two-link robotic manipulator model.

Desired Trajectory:

qd =

(
qd 1
qd 2

)
=

(
+cos(π2 t) + 1
− cos(π2 t)− 1

)
. (17)

System Model Parameters:

Table: System model parameters.

Symbol Description Link 1 Link 2

mp Mass 23.902 kg 3.88 kg

lp Length 0.45 m 0.45 m

lc p COM 0.091 m 0.048 m

bp
Viscous
coef. 2.288 Nms 0.172 Nms

fc p
Friction
coef. 7.17 Nm 1.734 Nm
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Validation 1: Simulation Setup Controllers for Comparative Study

• NAC-CO denotes the proposed controller based on constrained optimization .
• For NAC-L2 and NAC-eMod, the stabilizing terms −σθ̂ and ρ∥r∥θ̂ ensures the weights boundedness,

respectively.

Name Description Adaptation Law

NAC-L2
NAC with L2-regularization (equal to σ-modification) d

dt θ̂ = −α
(

∂J

∂θ̂
+ σθ̂

)
(σ stabilizes θ̂ towards origin)

NAC-eMod
NAC with ϵ-modification d

dt θ̂ = −α
(

∂J

∂θ̂
+ ρ∥r̃∥θ̂

)
(ρ stabilizes proportionally to filtered error r)

NAC-CO
Constrained Optimization-based NAC d

dt θ̂ = −α
(

∂J

∂θ̂
+

∑
j∈I λj

∂cj

∂θ̂

)
(proposed) (βj determines λj adaptation speed) d

dt λj = βjcj , and λj ← max(λj , 0)

Simulation Objective

By varying the parameters , i.e., βj , σ, and ρ, the parameter dependencies will be investigated.
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Validation 1: Simulation Results Box-and-Whisker Plots

Parameter Dependencies Investigation:
• The parameters ranged from 0.001 to 1 across 10 samples.

• NAC-L2 shows the worst performance with high variance.

• NAC-CO (proposed) shows the best performance and lowest variance.

• This result is because,

• NAC-L2 and NAC-eMod are biased towards the origin.
d
dt θ̂ = −α( ∂J

∂θ̂
+ σθ̂) (NAC-L2) or +ρ∥r∥θ̂ (NAC-eMod),

proportionally to σ and ρ, respectively.
• −λj

∂cj

∂θ̂
in NAC-CO (proposed) (i.e., d

dt θ̂ = −α( ∂J

∂θ̂
+ λj

∂cj

∂θ̂
))

disappears when constraints are inactive (i.e., cj < 0, and
λ = βjcj and λj ← max(λj , 0)).

Figure: Box-and-whisker plots of the tracking error
ISE.

NAC-L2 NAC-eMod NAC-CO (proposed)

Maximum 11.1753×10−3 0.5603× 10−3 0.3439× 10−3

Median 0.5898×10−3 0.5519× 10−3 0.3240× 10−3

Minimum 0.5434×10−3 0.5434× 10−3 0.3235× 10−3

Squared root of the tracking error ISE (Integral of Squared Error), i.e.,
√∫ T

0 ∥r∥2 dt, where T denotes a simulation time.
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Validation 1: Simulation Results Weight Norms
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Figure: Weight norms of NAC-L2
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Figure: Weight norms of NAC-eMod
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Figure: Weight norms of NAC-CO
(proposed)

• NAC-CO (proposed) showed the weight norms are bounded under pre-defined constraint θ = 20.

• NAC-L2 and NAC-eMod showed the bounded weight norms, but they depended on the parameters σ and ρ,
respectively.

• In other words, NAC-CO tracked the desired trajectory with a smaller weight norm than NAC-L2 and
NAC-eMod.
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Validation 1: Simulation Results Tracking Performance
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Figure: Tracking error of NAC-L2
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Figure: Tracking error of NAC-CO
(proposed)

• NAC-CO (proposed) outperformed NAC-L2 and NAC-eMod in terms of tracking performance.

• As the weights are biased towards the origin proportionally to the parameters σ and ρ in NAC-L2 and
NAC-eMod, respectively, the tracking performance of NAC-L2 and NAC-eMod deteriorated, as approaching
toward suboptimal points.
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Validation 2: Real-Time Implementation Setup

Controller:
• OpenCR 1.0 Board

• Control loop at 250 Hz (4 ms sampling time)

Input Saturation Constraints:

Figure: Input Saturation Function.

Experimental Setup:

Figure: Experimental setup for real-time implementation.
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Validation 2: Real-Time Implementation Results Demonstration Video

• This video demonstrates:
• Applicability of the proposed method to real-time control (under 4 ms sampling time).
• Convex input constraints handling.
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Conclusion

Summary of Contributions

• Proposed a constrained optimization-based neuro-adaptive control method.

• Adaptation laws are derived using constrained optimization method.

• The proposed method guarantees the stability of the system and the boundedness of the NN weights.

• Feasibility of the proposed method is validated through numerical simulation and real-time implementation.

Future Work

• Extend the proposed method to state constraints.

• Enhance the robustness and flexibility of the proposed method for various systems.
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Thank you for your attention!
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