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Abstract: This study proposes an integral error-based adaptive law for neural identifiers, aimed at enhancing the per-
formance of online system identification for nonlinear systems. Unlike conventional adaptive laws that update the neural
network based on instantaneous errors, the proposed approach performs updates using identification errors accumulated
over time. This mechanism enables the neural network to achieve more consistent and accurate function approximation
over the entire time interval, ensuring stable online learning of unknown nonlinear dynamics. A Lyapunov-based theo-
retical analysis guarantees the uniform ultimate boundedness of the neural identifier. Simulation results on a nonlinear
robot manipulator system demonstrate the effectiveness and improved convergence properties of the proposed method
compared to a conventional instantaneous error-based approach.
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1. INTRODUCTION

System identification is the process of estimating the
dynamic model of an unknown plant from input-output
data, which is essential for controller design and state es-
timation [1], [2], [3]. In particular, when the system dy-
namics are nonlinear or time-varying, the importance of
online identification becomes more pronounced. Offline
identification techniques assume large batches of data and
lack real-time adaptability, making them unsuitable for
dynamic environments [2], [4]. In contrast, online iden-
tification updates the model in real time, enabling the
tracking of changing system characteristics, and is thus
indispensable in dynamic control applications [1], [2].

Neural network-based identification methods have
been actively studied due to their flexible modeling ca-
pabilities for nonlinear systems [8], [9]. Neural networks
possess universal approximation properties [5], meaning
that with appropriate size, structure, and weights, they
can approximate any continuous nonlinear function ar-
bitrarily well over a compact set, thus effectively learn-
ing complex nonlinearities. For example, multilayer per-
ceptrons or neural networks can be used as identification
models to learn input-output relationships.

The conventional backpropagation algorithm updates
neural network weights by minimizing an instantaneous
squared error cost function, but this approach inherently
focuses only on instantaneous errors [6], making it dif-
ficult to guarantee long-term parameter convergence. To
enhance robustness, stabilization techniques such as σ-
modification and composite adaptation have been pro-
posed [11].

The limitations of existing methods are as follows.
First, most algorithms use cost functions that minimize
instantaneous errors, causing model parameters to focus
only on momentary discrepancies and making it difficult
to achieve accurate function approximation over the en-
tire time interval. Second, in nonlinear system identifica-

tion and control, stability proofs are often lacking, mak-
ing practical application to real systems difficult.

This paper proposes a online neural network identifi-
cation method that applies a cumulative error cost func-
tion with a forgetting factor to overcome the limitations
of previous studies. Specifically, by defining a new cost
function that accumulates identification errors at all time
points, the method aims to minimize the overall error in a
balanced manner. The proposed method is rigorously an-
alyzed using Lyapunov-based stability analysis to guar-
antee the uniform ultimate boundedness of the error.

2. PROBLEM FORMULATION

2.1 Model Dynamics
Consider the nonlinear system

ẋ(t) = f(x,u)︸ ︷︷ ︸
known

+ h(x,u)︸ ︷︷ ︸
unknown

(1)

where x ∈ Rn is the state vector and u ∈ Rm is the con-
trol input vector, and f(·) represents the known part of
the system dynamics, and h(·) denotes the unknown non-
linear dynamics. It is assumed that the open-loop system
(1) is stable, which implies that the state vector x(t) is
bounded in L∞.

2.2 Neural Network Identifier
By adding and subtracting Ax from (1), the system is

described by:

ẋ(t) = Ax(t) + g(x,u) + h(x,u) (2)

where A ∈ Rn×n is an arbitrary Hurwitz matrix,
g(x,u) = f(x,u)−Ax, which is the known nonlinear
function. A neural network identifier can be constructed
by expressing the mapping g in (2) using feedforward
nerual network architectures. Thus the identifier model



can be selected as:

˙̂x(t) = Ax̂(t) + g(x,u) + ĥ(x̂,u) (3)

where x̂ ∈ Rn is the estimated state vector, ĥ is the
estimation of the unknown dynamics h(x, u). Accord-
ing to the universal approximation theorem [6], a nerual
network with a sufficiently large number of hidden layer
neurons and an appropriate nonlinear activation function
can approximate the unknown dynamics h(x, u). Thus,
the neural network approximation of the unknown dy-
namics can be expressed as:

h(x,u) = Wσ(Vˆ̄x) + ϵ(x) (4)

where the input vector to the neural network is defined as
ˆ̄x = [x̂T , uT ]T , W ∈ Rn×h and V ∈ Rh×(n+m) are
the ideal weight matrices of the neural network. σ(·) de-
notes the activation function (e.g., the hyperbolic tangent
function tanh(·)), and ϵ(x) ≤ ϵN represents the neural
network approximation error, which are assumed to be
bounded. And it can be approximated by neural network
as follows:

ĥ(x̂,u) = Ŵσ(V̂ˆ̄x) (5)

where, Ŵ ∈ Rn×h and V̂ ∈ Rh×(n+m) are the esti-
mated weight matrices. Defining the errors x̃ = x − x̂,
W̃ = W−Ŵ, and Ṽ = V− V̂, the error dynamics are
given by:

˙̃x = Ax̃+ W̃σ(V̂ˆ̄x) + w(t) (6)

where w(t) = W
(
σ(Vx̄)− σ(V̂ˆ̄x)

)
+ ϵ(x) is the

lumped disturbance term.
In this study, we propose novel adaptive laws for the

neural network weights Ŵ and V̂ to improve the iden-
tification performance. The proposed adaptive laws are
designed to ensure more consistent and accurate function
approximation over time, as well as stable online learning
of the unknown nonlinear dynamics.

3. PROPOSED METHOD

3.1 Conventional Adpative Law
A common approach to update the weights of a neu-

ral network is the gradient descent method based on the
backpropagated error [7], which minimizes a cost func-
tion defined as the squared error. This method updates
the weights to reduce the instantaneous error at each time
step. Consider the plant model (2) and the identifier
model (3). The weights of the neural network are updated
according to

˙̂
W = −η1

(
∂J

∂Ŵ

)
− ρ1∥x̃∥Ŵ (7)

˙̂
V = −η2

(
∂J

∂V̂

)
− ρ2∥x̃∥V̂, (8)

where η > 0 is the learning rate, ρ > 0 is the leakage rate,
and ∂J

∂Ŵ
and ∂J

∂V̂
are the gradients of the cost function

with respect to the weights. The cost function is defined
as

J =
1

2
x̃(t)

T
x̃(t) (9)

where x̃(t) = x(t) − x̂(t) is the state error. The cost
function J is minimized by updating the weights of the
neural network using the gradient descent method.

However, since the cost function is based solely on
the instantaneous error, the model parameters tend to fo-
cus on minimizing short-term discrepancies rather than
ensuring consistent function approximation over the en-
tire time interval. Consequently, it becomes challenging
to guarantee accurate and uniform approximation perfor-
mance throughout the whole time horizon, particularly
when the system dynamics are time-varying. Therefore,
it is necessary to consider a cost function that captures
the overall behavior of the system in the time domain.

3.2 Integral Adaptive Law based Gradient Descent
To address the limitations of the instantaneous error

cost function, an integrated squared error cost functional
is defined as follows:

J =
1

2

∫ t

0

e−λ(t−τ)x̃(τ)
T
x̃(τ)dτ (10)

where λ > 0 is called forgetting factor. This function
accumulates the squared error over time, with a forgetting
factor that gradually reduces the influence of past errors.

Since the cost functional is of an integral form, the fil-
tered error signal z(t) is introduced to construct the up-
date laws.

z(t) =

∫ t

0

e−λ(t−τ)x̃(τ)dτ (11)

ż = −λz + x̃ (12)

Let us define

netV̂ = V̂ˆ̄x

netŴ = Ŵσ(V̂ˆ̄x).

Therefore, by using the chain rule ∂J
∂Ŵ

and ∂J
∂V̂

can be
computed according to

∂J

∂Ŵ
=

∂J

∂netŴ
·
∂netŴ
∂Ŵ

∂J

∂V̂
=

∂J

∂netV̂
·
∂netV̂
∂V̂

,

where

∂J

∂netŴ
=

∂J

∂x̃

∂x̃

∂x̂

∂x̂

∂netŴ
= −zT ∂x̂

∂netŴ
,

∂J

∂netV̂
=

∂J

∂x̃

∂x̃

∂x̂

∂x̂

∂netV̂
= −zT ∂x̂

∂netV̂



and

∂netŴ
∂Ŵ

= σ(V̂ˆ̄x)

∂netV̂
∂V̂

= ˆ̄x.

The original BP algorithm is modified such that the static
approximations of ∂x̂

∂netŴ
and ∂x̂

∂netV̂
( ˙̂x = 0) can be used.

∂x̂

∂netŴ
≈ −A−1

∂x̂

∂netV̂
≈ −A−1Ŵ(I−Λ(V̂ˆ̄x)),

where Λ(V̂ˆ̄x) = diag{σ2
i (V̂i ˆ̄x)}, (i = 1, 2, . . . ,m).

Then, the update laws for the weights Ŵ and V̂ can be
expressed as:

˙̂
W = −η1

(
zTA−1

)T
σ(V̂ˆ̄x)T − ρ1∥x̃∥Ŵ (13)

˙̂
V = −η2 ˆ̄x

(
zTA−1Ŵ(I−Λ(V̂ˆ̄x))

)T

− ρ2∥x̃∥V̂
(14)

Given W̃ = W − Ŵ and Ṽ = V − V̂, where W and
V are the fixed ideal wieghts, the weight error dynamics
can be rewritten as:

˙̃W = η1
(
zTA−1

)T
σ(V̂ˆ̄x)T + ρ1∥x̃∥Ŵ (15)

˙̃V = η2 ˆ̄x
(
zTA−1Ŵ(I−Λ(V̂ˆ̄x))

)T

+ ρ2∥x̃∥V̂
(16)

3.3 Stability Analysis
To analyze the stability of the system described by (6)

with the update laws (13)-(14), Lyapunov’s direct method
will be utilized. The goal is to demonstrate that the errors
x̃, W̃, and Ṽ are uniformly ultimately bounded.

Theorem 1: For the system given by (6) with the up-
date laws (13)-(14), all signals in the system (x̃,W̃, Ṽ)
are uniformly ultimately bounded.

Proof: To prove the theorem, the two subsystems are
analyzed separately: 1) the estimation error dynamics (6)
and the output layer weight error dynamics (15), and 2)
the hidden layer weight error dynamics (16). The bound-
edness of Ṽ does not affect the stability of the first sub-
system, as the activation function σ(V̂ˆ̄x) in (15) remains
bounded irrespective of Ṽ. However, the second subsys-
tem is affected by the first subsystem. Thus, the stability
of the first subsystem is established first, followed by the
analysis of the second subsystem.

Consider the Lyapunov function candidate for the first
subsystem:

L =
1

2
x̃TP1x̃+

1

2
tr(W̃T ρ−1

1 W̃)

+
1

2

∫ t

0

e−λ(t−τ)x̃(τ)TP2x̃(τ)dτ (17)

where P1 > 0 and P2 > 0 are positive definite matri-
ces. The first two terms represent the energy of the error
dynamics, while the last term represents the accumulated
error over time. After substituting the error dynamics, its
time derivative is:

L̇ = − 1

2
x̃T (Q1 −P2)x̃+ x̃TP1(W̃

Tσv +w)

+ tr( ˙̃WTρ−1
1 W̃)− λLint

where σv = σ(V̂T ˆ̄x), Q = Q1 − P2 > 0, and Lint =
1
2

∫ t

0
e−λ(t−τ)x̃(τ)TP2x̃(τ)dτ .

Substituting the update law (13) using ˙̃W = − ˙̂W yields

tr( ˙̃WTρ−1
1 W̃) = ηW tr(σvz

Tl1W̃) + ∥x̃∥ tr(ŴTW̃)

The leakage term can be expanded by substituting Ŵ =
W − W̃:

∥x̃∥ tr(ŴTW̃) = ∥x̃∥ tr((W − W̃)TW̃)

= −∥x̃∥∥W̃∥2 + ∥x̃∥∥W∥∥W̃∥

Substituting this into the L̇ expression gives:

L̇ ≤− 1

2
x̃TQx̃− ∥x̃∥∥W̃∥2 − λLint

+ x̃TP1(W̃
Tσv + w)

+ ηW tr(σvz
T ∥A−1ρ−1

1 ∥W̃)

+ ∥x̃∥∥W∥∥W̃∥

Additionally, the following inequalities hold:

|x̃TP1W̃
Tσv| ≤ ∥x̃∥∥P1∥(∥W̃∥σM + w̄)

∥x̃∥∥W∥∥Ŵ∥ ≤ ∥x̃∥∥W̃∥WM

|ηW tr(σvz
T l1W̃)| ≤ ηW ∥σv∥∥z∥∥A−1ρ−1

1 ∥∥W̃∥

≤ ηWσM
1

λ
∥x̃∥∥A−1ρ−1

1 ∥∥W̃∥.

where ∥W∥ ≤ WM , ∥σ(ˆ̄x)∥ ≤ σM , and because z(t)
is the state of the first-order filter (11) driven by x̃(t), its
2-norm satisfies

∥z(t)∥ =
∥∥∥∫ t

0

e−λ(t−τ)x̃(τ)dτ
∥∥∥

≤
∫ t

0

e−λ(t−τ)∥x̃(τ)∥dτ

≤ ∥x̃∥∞
∫ t

0

e−λ(t−τ)dτ

=
1− e−λt

λ
∥x̃∥∞

≤ 1

λ
∥x̃∥∞ ≤ 1

λ
∥x̃∥ .

with n denoting the state dimension. Then, the inequality
becomes:

L̇ ≤− 1

2
λmin(Q)|x̃∥2 − ∥x̃∥∥W̃∥2 − λLint

+ ∥x̃∥∥P1∥(∥W̃∥σM + w̄)

+ ∥x̃∥WM∥W̃∥+ ηWσM

λ
∥x̃∥∥A−1ρ−1

1 ∥∥W̃∥



By completing the squares for the terms involving ∥Ŵ∥,
a sufficient condition on ∥x∥ can be derived that is inde-
pendent of the neural network weights error and ensures
the time derivative of the Lyapunov candidate is negative.

L̇ ≤− ∥x̃∥∥W̃∥2 + kb∥x̃∥∥W̃∥

− 1

2
λmin(Q)∥x̃∥2 + ∥x̃∥∥P1∥wM − λLint (18)

where kb = ∥P1∥σM + WM + ηWσM

λ ∥A−1ρ−1
1 ∥. The

terms involving W̃ are of the form −(∥x̃∥)∥W̃∥2 +
(kb∥x̃∥)∥W̃∥. By completing the square, this is bounded
above by (kb∥x̃∥)2

4|x̃∥ =
k2
b

4 ∥x̃∥. The final inequality for L̇
is:

L̇ ≤ −1

2
λmin(Q)∥x̃∥2 − λLint +

(
∥P1∥w̄ +

k2b
4

)
∥x̃∥

(19)

To find a sufficient condition that guarantees L̇ ≤ 0 and
subsequently derive the ultimate bound, a simpler upper
bound can be analyzed. Since the term −λLint is always
non-positive, it can be omitted from the right-hand side
while the inequality still holds. The analysis thus pro-
ceeds with the remaining terms:

∥x̃∥ ≥
2
(
∥P1∥w̄ + k2b

)
λmin(Q)

= b (20)

Thus, the condition on ∥x̃∥ ensures the negative semi-
definiteness of L̇, leading to the ultimate boundedness of
x̃ and the output layer weight error W̃. In fact, L̇ is neg-
ative definite outside the ball with radius b.

To show the boundedness of the second subsystem,
consider (16) which can be rewritten as:

˙̃V = η2 ˆ̄x
(
zTA−1Ŵ(I−Λ(V̂ˆ̄x))

)T

+ ρ2∥x̃∥V̂

= −αṼ + αV + f2(z,Ŵ, V̂, ˆ̄x)

where f2(·) is a function of the system states and parame-
ters, and α = ρ2∥x̃∥ is a positive constant. It follows that
the term f2(·) is bounded based on the following argu-
ments: First, since the open-loop system is stable and the
ideal wieghts are also constant, it follows that Ŵ ∈ L∞
and x̂ ∈ L∞. Second, the function Λ(·) is bounded due
to the boundedness of hyperbolic tangent function. Third,
the filtered error z(t) is also bounded since it is the inte-
gral of the state error x̃(t), which is ultimately bounded
by (20). Therefore, the boundedness of Ṽ is also ensured.

Thus, the second subsystem is uniformly ultimately
bounded as well. The overall conclusion is that all signals
in the system are uniformly ultimately bounded, which
completes the proof.

4. SIMULATION

4.1 Target Model
To demonstrate the effectiveness of the proposed on-

line neural network identifier, a robot manipulator system

is considered as a representative example. The n-degree-
of-freedom robot manipulator is modeled by a nonlinear
state-space equation derived from the Lagrangian formu-
lation, which is well-suited for the proposed identification
approach [10].

M(q)q̈ +C(q, q̇)q̇ +G(q) + τd = τ (21)

where q ∈ Rn is the joint position vector, q̇ and q̈ are the
joint velocity and acceleration vectors, M(q) ∈ Rn×n

is the positive definite inertia matrix, C(q, q̇) ∈ Rn×n is
the Coriolis/centrifugal matrix, G(q) ∈ Rn is the grav-
ity vector, τ ∈ Rn is the control input, and τd is the
unknown friction/damping vector.

The system can be generalized for identification of
an unknown nonlinear function by considering a port-
Hamiltonian system in which the dynamics are parti-
tioned into known and unknown components in state-
space form.[

q̇
ṗ

]
=

[
0 I
−I 0

][∂H
∂p
∂H
∂q

]
+

[
0
I

]
τ︸ ︷︷ ︸

known

−
[
0
I

]
τd︸ ︷︷ ︸

unknown

(22)

where I ∈ Rn×n is the identity matrix, p = M(q)q̇
is the generalized momentum vector, and H(q,p) is the
Hamiltonian of the system. The first term on the right-
hand side represents the intrinsic system dynamics de-
rived from the port-Hamiltonian system, while the sec-
ond and third terms correspond to the control input and
dissipative torque(friction), respectively. The state vector
is denoted as x = [qT ,pT ]T ∈ R2n, and the control in-
put as u = τ ∈ Rn. The system dynamics can then be
expressed in the form of (1).

4.2 Simulation Setup
The simulation setup is as follows. The plant is a 2-

DOF robot manipulator described by Eq. (21), with phys-
ical parameters given in Table 1.

The reference trajectory for each joint is generated us-
ing a fifth-order polynomial (quintic) trajectory, which
ensures smooth position, velocity, and acceleration pro-
files. The initial joint positions and velocities are set
to zero. Specifically, the trajectory starts at qd(0) =
[π4 ,

π
2 ]

T and ends at qd(T ) = [3π4 , −π
2 ]

T , where T is the
duration of one cycle. After reaching the endpoint, the
trajectory reverses and repeats between these two way-
points, resulting in a periodic motion.

A feedback linearization controller is used to track the
reference trajectory:

τ = M(q)v +C(q, q̇)q̇ +G(q) (23)

where v = q̈d−Kd(q̇− q̇d)−Kp(q−qd), and Kp, Kd

are positive definite gain matrices.
The true friction model includes both viscous and

Coulomb friction, given by

τ d =

[
fc,1 tanh(

q̇1
σ1
) + b1q̇1

fc,2 tanh(
q̇2
σ2
) + b2q̇2

]
(24)



where fc,i is the Coulomb friction coefficient, bi is the
viscous friction coefficient, and σi is a small positive con-
stant to avoid singularities.

The proposed integral error-based adaptive neural
identifier is implemented with a single hidden layer, us-
ing the hyperbolic tangent activation function. The hid-
den layer consists of 20 neurons. The proposed method
uses gains of η1 = 5×101, η2 = 5×103, ρ1 = 1×10−3,
ρ2 = 1 × 10−3, and a forgetting factor of λ = 2.5. And
conventional method uses same gains except for forget-
ting factor. The weights of the neural network are ini-
tialized using a uniform random distribution in the range
[−0.01, 0.01] for reproducibility. For comparison, the
conventional instantaneous error-based adaptive neural
identifier was also implemented under the same simula-
tion setup.

Table 1. Physical parameters of the 2-DOF robot manip-
ulator used in simulation

Description Value
m Link mass 2.465 kg
l Link length 0.2 m
lc Link CoM position 0.13888 m
I Link inertia 0.06911 kg·m2

Im Motor inertia 0.008118 kg·m2

b Viscous friction 0.5 N·m·s
fc Coulomb friction 0.1 N·m
σ Smoothing parameter 6.67× 10−4 N·m·s

4.3 Simulation Results
The performance of the proposed integral error-based

adaptive neural identifier is evaluated by comparison with
the conventional instantaneous error-based method (7)-
(9). As shown in Fig. 1, both methods are able to ac-
curately estimate the unknown dynamics, including the
friction forces described in (24), and their estimates con-
verge well over time. Notably, the instantaneous function
estimation errors of the two methods show no significant
difference, indicating that both approaches achieve com-
parable accuracy in identifying the unknown nonlinear-
ities present in the system. Both methods also success-
fully approximate the static friction (stick-slip) effects.
The observed transient spikes are primarily due to stick-
slip phenomena caused by static friction during trajectory
reversals of the robot manipulator. After approximately
280 seconds, the estimation errors of both the conven-
tional and proposed methods converge to within a very
small residual error ball and remain bounded thereafter.
This behavior is consistent with the theoretical result in
Eq. (16), which guarantees that the estimation error ul-
timately stays within a small neighborhood (error ball)
determined by the system and adaptation parameters.

Although the estimation error graphs indicate similar
performance between the two methods, a closer exami-
nation of the weight matrices W and V at specific time
instances reveals a clear difference in convergence behav-
ior. Fig 2 illustrates the neural network outputs obtained
by feeding the same input trajectory (x,u) into the neu-
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Fig. 1. Estimation performance of the proposed method
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Fig. 2. Feedforward neural network outputs using
weights trained up to 280 s, 320 s, and 360 s for the
conventional and proposed methods.

ral network, using the weights W and V trained up to
280 s, 320 s, and 360 s, respectively.

The conventional method, which updates weights
based solely on instantaneous errors, results in weight
matrices that fluctuate significantly over time, as there
are many possible weight combinations that can mini-
mize the immediate error at each step. Consequently, the
neural network outputs vary at each selected time, indi-
cating a lack of convergence to an ideal set of weights
that consistently approximate the true system dynamics.

In contrast, the proposed integral error-based method,
which incorporates accumulated past errors, leads to
weight matrices that converge more reliably to ideal val-
ues. This is reflected in the consistent neural network
outputs across the selected time points, demonstrating
that the proposed method achieves stable and accurate ap-
proximation of the unknown dynamics and friction over



the entire time interval. As a result, the proposed method
not only reduces instantaneous errors but also ensures
overall error minimization, providing improved conver-
gence and robustness in online system identification.

5. CONCLUSION

This paper proposed an integral error-based adaptive
law for neural network identifiers, aiming to improve on-
line identification performance for uncertain nonlinear
systems. Unlike conventional methods that rely on in-
stantaneous errors, the proposed approach accumulates
identification errors over time using a forgetting factor,
resulting in more consistent and accurate function ap-
proximation. Theoretical analysis based on Lyapunov
stability demonstrated the uniform ultimate boundedness
of the estimation error. Simulation results on a nonlinear
robot manipulator confirmed that the proposed method
achieves comparable instantaneous estimation accuracy
to conventional approaches, while providing improved
convergence of the neural network weights over the entire
time interval. Future work includes experimental valida-
tion on real robotic systems, extension to broader classes
of nonlinear systems, and investigation of computational
efficiency for real-time implementation.
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