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Abstract

This thesis presents a constrained optimization-based neuro-adaptive controller

(CoNAC) for uncertain Euler-Lagrange systems subject to weight norm and input

constraints. A deep neural network (DNN) is employed to approximate an ideal stabi-

lizing control law which compensates for lumped system uncertainties while addressing

both types of constraints. The weight adaptation laws are derived from constrained

optimization theory, ensuring first-order optimality conditions at steady state. The

controller’s stability is rigorously analyzed using Lyapunov theory, ensuring bounded

tracking errors and DNN weights. Two numerical simulations were constructed to com-

pare CoNAC with other benchmark controllers. The simulations demonstrated effec-

tiveness of CoNAC in tracking error regulation and satisfaction of constraints.
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국 문 요 약

본논문은신경망가중치와제어입력의제약조건이있는불확실한오일러-라그랑주

시스템을 위한 제약 최적화 기반 신경망 적응 제어기를 제안한다. 깊은 신경망은 부여된

두 제약조건을 만족하는 동시에 시스템의 불확실성을 보상하며 원하는 제어 법칙을 근

사하도록 사용되었다. 가중치의 적응 법칙은 제약 최적화 이론으로 부터 유도되었으며,

정상 상태에서 1차 최적성 조건을 만족시킨다. 제어기의 안정성은 리아푸노프 이론을

사용하여 분석되었으며, 추종 오차와 신경망 가중치의 크기가 제한됨을 보여준다. 제안

된 제어기를 다른 벤치마크 제어기와 비교하기 위해 두 개의 시뮬레이션이 시행되었다.

시뮬레이션을 통하여 추종 성능과 제약 조건 만족에 제안된 제어기가 다른 제어기에

비하여 좋은 지표를 가진다는 것을 보였다.
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Chapter 1

Introduction

1.1 Background

Neural Networks in Control Design

Recent advances in deep learning field have shown that neural networks (NNs) can be

used in a wide range of applications. A fundamental idea of deep learning is to uti-

lize the well-known universal approximation capability of the NNs, which allows them

to approximate any smooth function over a compact set with minimal approximation

error. Using this property, various architectures of NNs have been introduced such as

convolutional neural networks (CNNs) for image processing, recurrent neural networks

(RNNs) for time-series data, and long short-term memory (LSTM) networks for se-

quential data. These advances have motivated many researchers in the control field to

leverage NNs for control design.

In general, the NNs are used in control design as a parameter estimator or controller.

In other words, the NNs are trained to produce corresponding output to certain in-

put (e.g. real system parameters or desired control input from current system output).

Hence, designers need to make a dataset which contains input-output pairs, to train the

NNs. Random control inputs are typically applied to collect the input-output pairs by

exploring the interested operating domain. Then, the NNs are trained to approximate

the input-output mapping using the dataset via supervised learning methods to solve

regression problem. For example, as the parameter estimators, 1-Dimensional convolu-

tional neural network (1D-CNN) is used for friction potential estimation [1]. Similarly,

CNN is used to estimate the road conditions (e.g. dry or icy condition) by extracting

features of road image from built-in camera [2]. A time delay neural network (TDNN)

is used to estimate tire-road friction coefficient for vehicle control [3]. In addition, for

motor systems, specific architectures of NNs are used to estimate for the nonlinearity

of voltage source inverter and synchronous machine [4].

On the other hand, as the controller, the NNs are trained to imitate given desired

control input. Thus, designers should design desired controller as the output of input-
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output pair for training as well. In [5,6], CNNs are used to produce steering angle from

raw pixel data of camera for vehicle control. This literature shows that end-to-end

controller can be achieved by using NNs. As an optimal feedforward torque control of

synchronous machines, NNs are used to produce optimal reference current [7–9] which

is calculated using nonlinear programming (NLP). The literature reported that the NNs

can provide the optimal reference current with less computational cost than existing

methods. This is because, in general, NLP needs high computational cost to solve the

optimization problem exhibiting unsuitability for real-time control. In contrast, once

the NNs are trained, they can be used for real-time control, since they consist of simple

matrix affine operations and element-wise nonlinear functions. Especially, in [9], multi-

objective hyperparameter optimization is utilized to obtain optimal structure of NN

regarding floating point operations (FLOPS) which can be considered as computational

cost, and current errors, since motor systems require high frequency of control input.

In conclusion, if the NNs are well-trained, the NNs can be used as an estimator or

controller in the control system, with smaller computational cost (if online-train is not

conducted) and sufficient accuracy. However, if an operating point goes outside the in-

terested operating domain, the NNs can not provide the accurate estimation or control

input. This is because, the NNs are train through the dataset which is collected in the

interested operating domain (i.e. they are trained for interpolation not extrapolation

of the dataset). Furthermore, the NNs are inherently black-box models whose input-

output mapping is not interpretable [10,11]. This causes stability and safety problems

of the system, since the possibility of unexpected behavior (e.g. excessively large or

non-proper control input) of the controller exists. Therefore, the stability analysis of

the control system with NNs should be conducted to ensure the stability and safety in

a perspective of control theory.

Neuro-Adaptive Control

From 1980s, as a branch of adaptive control, neuro-adaptive control (NAC) has been

developed to leverage the NNs for control design to approximate unknown system dy-

namics or entire control laws [12, 13]. The conventional adaptive control is a control

method that adapts the control parameters to compensate for uncertainties in the

system dynamics, since, in practice, real systems often contains uncertainties due to

unmodeled dynamics, parameter variations, or external disturbances which can signif-

icantly degrade control performance and lead to instability. Similarly, NAC methods
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approximate the uncertainties via NNs and adapts the weights of the NNs. For more

details of conventional adaptive control, the reader is referred to [14,15].

The adaptive control methods typically ensure the stability of the control system

including adaptation law, in the sense of Lyapunov by conducting Lyapunov stability

analysis or deriving adaptation law using Lyapunov stability analysis. As a branch of

adaptive control, the adaptation laws of NAC methods also ensure the stability. This

means that the NAC methods have online adaptation (train) capability with stability

guarantees. It is notable, that the adaptation laws of NAC methods (which will be

presented in the Section 1.2 with a simple example) use the current observed error as

the feedback signal to be backpropagated for adaptation (i.e. generally it is prediction

error of NNs). Since the NN’s weights are adapted according to current observed error

which is dependent on current NN’s weights, the offline adaptation methods can not

be conducted. This feature makes NAC methods be more close to reinforcement learn-

ing methods which attempts to maximize expectation value of reward (i.e. reward is

typically defined as sign changed tracking error.) and need to implemented in real-time

to obtain current reward.

Besides, since NAC is based on control theory, relatively simpler NN architectures

and adaptation methods are used due to their brief mathematical expression. Most

widely utilized architectures are single hidden layer neural networks (SHLNNs) [16–

21] and radial basis function neural networks (RBFNNs) [22–27]. Recently, deep NNs

(DNNs) are utilized in NAC with stability guarantees [28]. The DNNs are more effective

for complex system approximation than shallow NNs, since it offer greater expressive

power with same number of neurons [29]. Additionally, variations of DNNs, such as

long short-term memory (LSTM) networks for time-varying dynamics [30] and physics-

informed neural networks (PINNs) for leveraging physical system knowledge [31], have

further extended the capabilities of neuro-adaptive control systems.

These various NNs are typically employed to improve the conventional control meth-

ods. In [16, 20], the NNs are used to compensate for system uncertainties in the feed-

back linearization control. Similarly, the NNs are used to approximate the unknown

dynamics in the backstepping control for higher-order system in [18,25,26,32]. Besides,

sliding mode control (SMC), impedance control and admittance control are also de-

veloped with NNs in [24], [22] and [23], respectively. A few of the NAC methods are

utilized NNs to approximate the entire control law [19]. Aforementioned NAC meth-

ods have shown the effectiveness of the NNs in control design to approximate system
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uncertainties and control law.

However, there are some limitations in the existing NAC methods. In following

sections, the limitations are presented, and the research objective is suggested.

1.2 Simple Example of Neuro-Adaptive Control

In this section, a simple example of neuro-adaptive control (NAC) is presented.

Consider a control affine system as follows:

ẋ = f(x) + h(u)

where x ∈ Rn is the state, f : Rn → Rn is the unknown dynamics, h : Rn → Rn is

control input saturation function, and u ∈ Rn is the control input. The objective of

this control problem is to design a control law u such that the state x converges to the

origin. The unknown dynamics f(x) can be approximated via NNs according to the

universal approximation theorem presented in Theorem 2.3.1, as follows:

f(x) = Φ(x; θ∗) + ϵ

where Φ(·) denotes a universal approximator (e.g. SHLNNs, RBFNNs or DNNs), θ∗

is the ideal weight and ϵ is the approximation error. Note that θ∗ is supposed to be

constant (θ̇∗ = 0) and bounded.

Ignoring control input saturation, a desired feedback-linearization based stabilizing

control law can be developed as follows:

u∗ = −Φ(x; θ∗)− ϵ− kx

where k is a positive control gain. Using the estimation of ideal weight θ̂, the control

law can be approximated as follows:

u = −Φ(x; θ̂)− kx

where θ̂ is the estimated weight. The closed-loop dynamics can be described as follows:

ẋ = Φ∗ + ϵ+ h(−kx− Φ̂)

– 4 –



where Φ∗ = Φ(x; θ∗) and Φ̂ = Φ(x; θ̂).

The adaptation law can be derived based on the Lyapunov stability analysis. To

simplify the derivation, ignore the control input saturation. Then, taking the time

derivative of the Lyapunov function candidate V = (1/2)xTx + (1/2α)θ̃T θ̃ where θ̃ ≜

θ̂ − θ∗ and α ∈ R>0 denotes adaptation gain (learning rate), yields:

V̇ =xT (−kx+ Φ∗ − Φ̂ + ϵ) +
1

α
θ̃T ˙̃θ

=− kxTx+ xT (Φ∗ − Φ̂ + ϵ) +
1

α
θ̃T

˙̂
θ

=− kxTx+ xT (−∂Φ̂

∂θ̂
θ̃ +O(∥θ̃∥2) + ϵ) +

1

α
θ̃T

˙̂
θ

=− kxTx+ θ̃T
(
1

α
˙̂
θ − ∂Φ̂

∂θ̂

T

x

)
+ xT∆

where O(∥θ̃∥2) is the higher order term, and ∆ ≜ O(·) + ϵ is the lumped disturbance

term. Assuming that ∆ is sufficiently small, the adaptation law which realizes V̇ ≈
−kxTx < 0 can be derived as follows:

˙̂
θ = α

∂Φ̂

∂θ̂

T

x.

However, ∆ can dominate the system when an initial (or on certain domain) estimation

error θ̃ is large. In result, the parameter drift can occur due to ∆ (i.e. the parameter

estimation θ̂ increases to infinity over time (see [14])). In practical physical applica-

tions, the parameter drift is crucial since it makes the control input reach to limitation

of actuators (i.e. the amplitude of control input is dependent on weights). This can

destruct the system performance and lead to the system instability.

1.3 Research Objective

To address the above issues (boundedness of weights and control input satura-

tion), constrained optimization offers a promising approach. By formulating the NAC

problem as an optimization problem with constraints, it is possible to adapt the NN

weights (minimize an objective function (e.g., tracking error)) satisfying the constraints

regarding with both weight boundedness and control input saturation. Constrained

optimization provides a theoretical framework for defining optimality of the problem
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and presents numerical methods for finding solutions [33]. To the best of the authors’

knowledge, no prior work has applied constrained optimization theory to adaptive con-

trol systems with real-time weight adaptation. Only a few of literature are introduced

constrained optimization based methods to train NNs more efficiently [34–36].

This gap suggests that constrained optimization could be key to addressing both

weight norm boundedness and input constraints in a unified, theoretically grounded

framework, particularly in real-time NAC. In summary, the objective of this thesis is

to develop a NAC that can ensures boundedness of the weights and satisfaction of the

input saturation via optimization method.

1.4 Outline of the Thesis

The remainder of this thesis is organized as follows. Preliminaries for the thesis are

presented in Chapter 2. Using the preliminaries the proposed constrained optimization-

based neuro-adaptive controller (CoNAC) is presented over Chapter 3 and Chapter 4.

Each chapter, at first, introduces the exiting methods concerning weight boundedness,

and input saturation respectively. Then, the details of the proposed CoNAC are pre-

sented, and simulation results are reported. Finally, Chapter 5 concludes the thesis and

suggests future work.
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Chapter 2

Preliminaries

This chapter presents the necessary background and mathematical tools required for

the subsequent chapters. Since the proposed controller (constrained optimization-based

neuro-adaptive controller (CoNAC)) is based on adaptive control and constrained op-

timization theory and deep neural networks (DNNs), this chapter covers the following

topics: control theory, constrained optimization theory, and the approximation theory.

2.1 Related Control Theory

In this thesis, the Euler-Lagrange systems will be used as target system since many

engineering systems can be modeled using Euler-Lagrange systems (e.g. aerospace,

robotics, and automotive applications). Using system matrices M(q) ∈ Rn×n, C(q, q̇) ∈
Rn×n, and G(q) ∈ Rn, and external forces F (q) ∈ Rn, the Euler-Lagrange system can

be rewritten as

M(q)q̈ + C(q, q̇)q̇ +G(q) + F (q) = τ

where q ∈ Rn denotes generalized state variables and τ ∈ Rn denotes generalized con-

trol input. The Euler-Lagrange system can be transformed into a second-order control-

affine system by defining the state variables x1 ≜ q and x2 ≜ q̇ as

ẋ1 =x2

ẋ2 =f(x, t) + g(x, t)u

where x ≜ [x1, x2]
T ∈ R2n, u ≜ τ , f(x, t) ≜ M−1(−Cx2 − G − F ) and g(x, t) ≜ M−1

are system functions.

Using backstepping control approach, the system can be broken down into lower

dimension subsystem by generating the auxiliary control input to regulate the higher

dimension original system [37]. Considering tracking error with a given smooth refer-

ence signal r1(t) ∈ Rn, the tracking error and its time-derivative are defined as

e1 ≜ x1 − r1, ė1 = ẋ1 − ṙ1 = x2 − ṙ1.
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Using the Lyapunov function defined as V1 ≜ (1/2)eT1 e1, the time-derivative of V1 yields

V̇1 = eT1 ė1 = eT1 (x2 − ṙ1)

The auxiliary control input r2 ∈ Rn which realizes V̇1 < 0 can be defined as r2 ≜

−k1e1 + ṙ1 for some constant k1 ∈ R>0. Let e2 ≜ x2 − r2 = x2 − (−k1e1 + ṙ1) denotes

the tracking error of x2.

Then, the time-derivative of the Lyapunov function V2 ≜ (1/2)eT1 e1 + (1/2)eT2 e2

yields

V̇2 =eT1 (x2 − ṙ1) + eT2 ė2

=eT1 (−k1e1 + e2) + eT2 ė2

=− k1e
T
1 e1 + eT1 e2 + eT2 (f + gu− ṙ2)

.

Therefore, the stabilizing control input u that realizes V̇2 = −k1eT1 e1 − k2e
T
2 e2 < 0

can be designed as

u ≜ g−1(−e1 − k2e2 + ṙ2 − f)

where k2 ∈ R>0 is a positive constant. Note that, the stabilizing control input u requires

the knowledge of the system functions f(x) and g(x).

On the other hand, the bounded input bounded output (BIBO) stability defined in

Theorem 2.1.1, will be used for the stability analysis in the later chapters.

Theorem 2.1.1. (see [38, Theorem 1.9]) Let the closed-loop transfer function H(x)

be the exponentially stable and strictly proper. Then y = H ⋆ u ∈ L∞, ẏ ∈ L∞, and y

is uniformly continuous, if u ∈ L∞.

In other word, ∥x∥ is bounded, for a linear system ẋ = Ax+Bu where A is Hurwitz

matrix and ∥B∥F and ∥u∥ are bounded. Without loss of generality, the BIBO stability

can be extended to matrix state x ∈ Rn×m as well.

2.2 Mathematical Review

2.2.1 Matrix Algebra

In this thesis, we will use the following notations for matrix algebra.

• x(i) denotes the i-th element of vector x ∈ Rn.
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• A(i,j) denotes the element in the i-th row and j-th column of matrix A ∈ Rn×m.

• rowj(A) denotes the j-th row of matrix A ∈ Rn×m.

• λmin(A) denotes the minimum eigenvalue of matrix A ∈ Rn×n.

For a matrix A ∈ Rn×m, the vec operator is defined as

vec(A) ≜
[
row1(A

T ) row2(A
T ) · · · rown(A

T )
]
∈ Rnm.

Moreover, for the brief expression of neural networks (NNs) and their gradient,

Kronecker product will be used which is defined in Definition 2.2.1.

Definition 2.2.1 (see [39, Definition 7.1.2]). Using the vec operator, the Kronecker

product of two matrices A ∈ Rn×m and B ∈ Rp×q is defined as

A⊗B ≜


A(1,1)B A(1,2)B · · · A(1,m)B

A(2,1)B A(2,2)B · · · A(2,m)B
...

...
. . .

...

A(n,1)B A(n,2)B · · · A(n,m)B

 ∈ Rnp×mq.

The Kronecker product has the following proposition.

Proposition 2.2.1 (see [39, Proposition 7.1.9]). For matrix A ∈ Rn×m and vector

x ∈ Rn, we have the following property

ATx = vec(ATx) = vec(xTA) = (Im ⊗ xT )vec(A).

The proof of Proposition 2.2.1 can be found in [39]. Using Proposition 2.2.1 the

gradient with respect the vectorized A can be computed as

∂(ATx)

∂vec(A)
= Im ⊗ xT .

The reader is referred to [39, Chapter 7] for more details about the Kronecker

Product and its properties.
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2.2.2 Constrained Optimization Theory

The general formulation of the constrained optimization problem can be represented

as

minimize
x

f(x), subject to

cj(x) = 0, ∀j ∈ E

cj(x) ≤ 0, ∀j ∈ I

where f : Rn → R denotes the objective function, x ∈ Rn denotes the optimization

variables, and E and I are the set of equality and inequality constraints, respectively.

The objective of the constrained optimization problem is to find the optimal point x∗

that locally or globally minimizes the objective function f(x), satisfying the constraints

cj(x). Generally, the imposed constraints in an active set A ≜ E ∪ {j ∈ I | cj ≥ 0} are
supposed to satisfy the Linear Independence Constraint Qualification (LICQ) which is

defined in Definition 2.2.2.

Definition 2.2.2 (see [33, Definition 12.1]). If the gradients of the active constraints

∇cj(x∗), j ∈ A, are linearly independent, the set of constraints {cj} satisfies the Linear
Independence Constraint Qualification (LICQ) at x∗.

Using the Lagrange multipliers λj for each constraint cj(x), the Lagrangian function

is defined as

L(x, [λj]j∈E∪I) = f(x) +
∑
j∈E

λjcj(x) +
∑
j∈I

λjcj(x).

Then, the constrained optimization problem can be reformulated as the min-max prob-

lem as

min
x

max
[λj ]j∈E∪I

L(x, [λj]j∈E∪I).

The conditions of optimality are defined by the first-order necessary condition and

the second-order necessary and sufficient conditions. The first-order necessary condi-

tion which is often known as the Karush-Kuhn-Tucker conditions (KKT) is that the

gradient of the Lagrangian function L at (x∗, λ∗) should be zero. The second-order

necessary condition is that the Hessian matrix of L at (x∗, λ∗) should be positive semi-

definite while the second-order sufficient condition is that the Hessian matrix should be

positive definite (i.e. L is convex in the neighbor of the point (x∗, λ∗)). The constrained

optimization problem typically attempts to find local solution (x∗, λ∗) which satisfy

the first-order necessary condition of optimality, since there is no guarantee that L is

convex function (i.e. for the global optimality second-order condition is required). The
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KKT conditions for the constrained optimization problem is stated in [33] as following

Theorem 2.2.1.

Theorem 2.2.1 (see [33, Theorem 12.1]). Let x∗ be a local solution of the constrained

optimization problem. Then, there exists a Lagrange multiplier vector λ∗ such that the

following conditions are satisfied:

∇xL(x
∗, λ∗) = 0

cj(x
∗) = 0, ∀j ∈ E

cj(x
∗) ≤ 0, ∀j ∈ I

λ∗
j ≥ 0, ∀j ∈ I

λ∗
jcj(x

∗) = 0, ∀j ∈ E ∪ I.

For the details of the optimization theory, the reader can refer to [33] and [40].

2.2.3 Preservation of Convexity

Definition 2.2.3 (see [40, Chapter 2.1.4]). A set C is convex if the line segment

between any two points in C lies entirely in C. That is, for all x, y ∈ C and λ ∈ [0, 1],

we have

λx+ (1− λ)y ∈ C.

Definition 2.2.4 (see [40, Chapter 3.1.1]). A function f : Rn → R is convex if dom

of f is a convex set and if for all x, y ∈ dom f and λ ∈ [0, 1], we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

The convexity is very useful property in optimization theory and controller design to

find optimal control parameters, since the every local solution points are global solution

point satisfying the second-order necessary and sufficient conditions [33, Theorem 2.5].

Furthermore, if the optimal point of the convex function f(x) is the origin, the opposite

direction of the gradient of f at x is the descent direction. In other word, the angle

between the gradient at x and the vector x is positive as following Lemma 2.2.1.

Lemma 2.2.1. Let f : Rn → R be a convex function and x be a point in the domain

of f . If the origin is the optimal point of the function f , then the angle between the

gradient of f at x and the vector x is positive, implying that ∇fTx > 0.
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Proof. Let the origin be the isolated optimal point that minimizes the function f such

that f(x) > f(0). Then, the following inequality holds:

∇fT (−x) = d

dδ
f(x− δx)

∣∣∣∣
δ=0

= lim
δ→0

f(x+ δ(0− x)− f(x)

δ

≤ lim
δ→0

δf(0) + (1− δ)f(x)− f(x)

δ

=f(0)− f(x) < 0

.

It implies that the angle between the gradient of f at x and the vector x is positive.

In [40, Chapter 2.3.2], the authors stated that the affine functions preserve the

convexity of the function as follows:

Recall that a function f : Rn → Rm is affine if it is a sum of a linear function

and a constant, i.e. if it has the form f(x) = Ax+ b, where A ∈ Rm×n and

b ∈ Rm. Suppose S ∈ Rn is convex and f : R ∈ n → Rm is an affine

function. Then the image of S under f ,

f(S) = {f(x)|x ∈ S},

is convex.

This property will be utilized in the stability analysis of the controller in Chapter 4.

2.3 Deep Neural Networks

The capability of NNs to approximate functions is based on the approximation

theory [41]. In other words, the NNs can approximate any sufficiently smooth function

on a compact set with arbitrary accuracy according to the universal approximation

theorem defined in Theorem 2.3.1.

Theorem 2.3.1 (see [13, 42]). Let f be a sufficiently smooth function defined on a

compact set x ∈ Ω ∈ Rn. Then, for any ϵ ∈ R>0, there exists an ideal weight vector θ∗ in

a single hidden layer NN (SHLNN) with the sigmodal activation function Φ(x; θ∗) that

approximates f with ϵ-accuracy in x ∈ Ω such that supx∈Ω ∥Φ(x; θ∗)− f(·)∥ = ϵ <∞.
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Figure 2.1: Architecture of the deep neural network (DNN).

Besides, the universal approximation property of deep NNs (DNNs) is also reported

in [43]. Generally, the ideal vector is assumed to be constant and bounded such that

∥θ∗∥ ≤ θ̄ <∞.

Mathematical Expression of Deep Neural Network

Most literature which utilizes the SHLNNs in the controller, have shown that the

SHLNNs can approximate the uncertain system functions or control law with satisfac-

tory performance index. However, the DNNs are exponentially more expressive than

the SHLNNs to the same accuracy in terms of the total number of weights [29]. There-

fore, the DNNs will be utilized in the controller in this thesis. Note that the SHLNN

can be considered as the simplest architecture of the DNN with a single hidden layer.

In general, it was open problem to leverage the DNNs in controllers due to the

nonlinearity and mathematically complex architecture of the DNNs. In [28], Omkar

Sudhir Patil et al. proposed the novel DNN based neuro-adaptive control for control-

affine nonlinear systems. The architecture of the DNN in the controller is described in

Fig. 2.1 and is defined as

Φ(xn; θ) ≜ V T
k ϕk(V

T
k−1 · · ·ϕ2(V

T
1 ϕ1(V

T
0 xn︸ ︷︷ ︸
Φ0

)

︸ ︷︷ ︸
Φ1

) · · · )

︸ ︷︷ ︸
Φk−1

)

︸ ︷︷ ︸
Φk

(2.1)

where xn denotes the NN input vector, Vi ∈ R(li+1)×li+1 is the weight matrix of the

– 13 –



ith layer, and ϕi : Rli → Rli+1 represents the activation function of the ith layer. The

element-wise activation function is defined as ϕi(x) = [σ(x(1)), σ(x(2)), · · · , σ(x(li)), 1]
T ,

where σ : R→ R is a nonlinear function, and the augmentation of 1 is used to account

for bias terms in the weight matrices. For a better understanding, (2.1) also can be

represented recursively as

Φi ≜

V T
i ϕi(Φi−1), i ∈ [1, . . . , k],

V T
0 xn, i = 0,

where Φi denote each layer’s output (i.e. the last layer’s output is equal to the output

of DNN such that Φk = Φ(xn; θ)).

One of the widely used activation functions for large DNNs is from the ReLU fam-

ily [44], which effectively avoids the gradient vanishing problem during error backprop-

agation. The gradient vanishing problem occurs when the gradient of the activation

function is close to zero, since the gradient of each layer is multiplied using chain rule

to backpropagate the error to the inner layers (i.e. deeper NNs have high possibility of

gradient vanishing). However, for control applications where relatively shallow DNNs

are typically sufficient, and the gradient vanishing issue is less severe, the sigmoid func-

tion or the hyperbolic tangent function is commonly used as the activation function.

These functions simplify stability analysis due to their continuous differentiability, and

their outputs and gradients are bounded such that ∥ϕi(·)∥ < ∞ and ∥∇ϕi(·)∥F < ∞.

In this thesis, the hyperbolic tangent function tanh(·) was selected as the activation

function (i.e. σ(·) = tanh(·)), which provides desirable boundedness with ∥σ(·)∥ < 1

and ∥∇σ(·)∥ < 1. Note that, the number of hidden layers should be limited around

5 to avoid the gradient vanishing issue, since the gradient vanishing problem is not

addressed.

For simplicity, each layer’s weights are vectorized as θi ≜ vec(Vi) ∈ RΞi , where

Ξi ≜ (li + 1)li+1 is the number of weights in the ith layer. The total weight vector

θ ∈ RΞ is defined by augmentation θi for all i ∈ [0, · · · , k] as

θ ≜


θk

θk−1

...

θ0

 =


vec(Vk)

vec(Vk−1)
...

vec(V0)

 ,
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where Ξ =
∑k

i=0 Ξi represents the total number of weights.

Gradient of Deep Neural Network

In the derivation of adaptation law, the gradient of the DNN with respect to the weights

is required. The gradient of Φ(xn; θ) with respect to θ is defined as

∂Φ

∂θ
=

[
∂Φ

∂θk

∂Φ

∂θk−1

· · · ∂Φ

∂θ0

]
∈ Rn×Ξ (2.2)

where

∂Φ

∂θi
=



(Ilk+1
⊗ ϕT

k ), i = k

V T
k ϕ′

k(Ilk ⊗ ϕT
k−1), i = k − 1

...

V T
k ϕ′

k · · ·V T
1 ϕ′

1(Il1 ⊗ xT
n ), i = 0

,

where ϕi ≜ ϕi(Φi−1) and ϕ′
i ≜ ∂ϕi/∂Φi−1. The gradient can be obtained using the chain

rule and Proposition 2.2.1.
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Chapter 3

CoNAC for Uncertain Euler-Lagrange Sys-

tems Under Weight Constraints

3.1 Introduction

In this chapter, a novel constrained optimization-based neuro-adaptive control (Co

NAC) is presented for uncertain Euler-Lagrange systems with a weight norm constraint.

As presented in Section 1.2, one of the common issues in neuro-adaptive control (NAC)

is that the boundedness of neural network’s (NN) weights is not guaranteed. Since the

amplitude of control input of NAC is dependent on the weights, the unbounded weights

may lead to instability and severe safety issues. The satisfaction of the boundedness of

the weights are reformulated into weight norm constraints, which are then incorporated

into the CoNAC.

3.2 Problem Formulation

Consider an uncertain Euler-Lagrange system modeled as

M(q)q̈ + C(q, q̇)q̇ +G(q) + F (q) = τ (3.1)

where q ∈ Rn and τ ∈ Rn denotes the generalized coordinate and the control input,

respectively;M(q) ∈ Rn×n, C(q, q̇) ∈ Rn×n, and G(q) ∈ Rn denote the unknown system

function matrices; and F (q) ∈ Rn denotes the external force.

Using the user-designed matrices M0 > 0, C0 and G0, (3.1) can be represented as

M0q̈ + C0q̇ +G0 = τ + f(q, q̇, q̈) (3.2)

where f(q, q̇, q̈) ≜ −(M−M0)q̈−(C−C0)(q, q̇)q̇−(G−G0)−F (q) denotes the residual

unknown term.

As presented in Section 1.2, the parameter drift (i.e. the weights of NNs can diverse)

may occur due to the lumped disturbance term. Hence, the objective of the control
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design is to make q track the continuously differentiable desired trajectory qd(t) : R→
Rn under the unknown terms f while ensuring boundedness of weights of NN in the

controller.

3.3 Exiting Works for Boundedness of Weights

Most studies modify their adaptation laws to ensure the boundedness of the weights.

3.3.1 Projection Operator

In [27,28,30], the projection operator is utilized to prevent the weight divergence, by

projecting the adaptation direction on some convex set of the weights. The projection

operator is defined in [37, Appendix E, eq. (E.4)] and represented as

ProjΩ(y) =


Γy

if x ∈ Ω or if

x ∈ δΩ and ∇cTΓy ≥ 0

Γy − Γ ∇c∇cT

∇cTΓ∇c
Γy otherwise

(3.3)

where Γ = ΓT > 0 is adaptation gain matrix and y ∈ Rn denotes the update direction

of optimization variable x ∈ Rn. Moreover, Ω ≜ {x | c(x) ≤ 0} denotes a convex

set defined by c(·) is a convex function and δΩ denotes a boundary of Ω. The convex

function c(·) is typically selected as (1/2)xTx ≤ x̄2 where x̄ ∈ R>0 is a maximum norm

of x. However, in the literature, the projection operator is only applied to theoretically

guarantee the boundedness of the weights, by selecting the convex set as large as

possible. This is because, the authors attempts to estimate the globally ideal weights

whose magnitude is unknown.

3.3.2 σ and ϵ-modifications

In adaptive control theory, the σ-modification [26] and the ϵ-modification [17,19] are

widely used to regulate the magnitude of the weights by adding a stabilizing function

in the adaptation law as follows:

yσ = Γ(y + λx), yϵ = Γ(y + ρ∥e∥x)
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where yi, i ∈ [σ, ϵ] denote adaptation laws of σ-modification and ϵ-modification, respec-

tively, e denotes tracking error, and λ and ρ denote parameters of σ-modification and

ϵ-modification, respectively. These methods make the invariance set of the estimation

error of the weights over time. The existing methods have shown their effectiveness

in ensuring the boundedness of the weights via numerical simulations. However, the

weights are biased to the origin by the stabilizing function, which may degrade the

performance of the controller. This means that there is a trade-off between the bound-

edness of the weights and the optimality of the weights. Moreover, they lack theoretical

analysis regarding the optimality of the adapted weights.

Interestingly, similar approaches that regulate the magnitude of the weights have

also been introduced in the deep learning literature. One of the approaches is L2-

regularization, which adds the squared magnitudes of the weights to the objective

function [45,46]. Then, the adaptation process attempts to reduce not only the original

objective function, but also the magnitude of the weights. By regulating the magnitude

of the weights, the stability of the adaptation process can be enhanced, and overfitting

can be prevented. However, L2-regularization also involves same limitations as σ and

ϵ-modifications.

3.4 CoNAC with Weight Norm Constraint

Without loss of generality a single hidden layer neural network (SHLNN) is utilized

in this chapter for better intuition and simplicity. Note that SHLNN is the simplest

case of DNN presented in Section 2.3. The architecture of the CoNAC is illustrated

in Fig. 3.1, consisting of: a reference generator, the SHLNN that functions as NAC,

and a weight optimizer for the SHLNN. The reference generator is designed based on

backstepping control (BSC), presented in previous Section 2.1 , to generate a tracking

reference for both q and q̇.

3.4.1 Control Law Development

The system dynamics (3.2) can be represented as

q̇ = z,

ż = −M−1
0 C0z −M−1

0 G0 +M−1
0 h(τ) +M−1

0 f,
(3.4)
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Figure 3.1: Architecture of the constrained optimization-based neuro-adaptive con-
troller (CoNAC).

where z ≜ q̇.

Consider the Lyapunov function Vc1 ≜ (1/2)q̃T q̃, where q̃ ≜ q − qd represents the

tracking error between the actual trajectory q and the desired trajectory qd. The desired

trajectory of z, ensuring V̇c1 = q̃T (z − q̇d) < 0 is

z∗ ≜ −kq q̃ + q̇d,

which functions as the reference generator with control gain kq ∈ R>0. The tracking

error of z relative to the desired trajectory z∗ is defined as

z̃ ≜ z − z∗ = z − (−kq q̃ + q̇d). (3.5)

Next, consider the Lyapunov function Vc2 ≜ Vc1 + (1/2)z̃T z̃. Its time derivative is

V̇c2 = q̃T (−kq q̃ + z̃) + z̃T (−M−1
0 C0z −M−1

0 G0

+M−1
0 h(τ) +M−1

0 f − ż∗)

= −kq q̃T q̃ − kz z̃
T z̃ + z̃T (kz z̃ + q̃

−M−1
0 C0z −M−1

0 G0 +M−1
0 h(τ) +M−1

0 f − ż∗)

with control gain kz ∈ R>0. The stabilizing control law, which does not account for

weight norm and input constraints, is defined as follows:

τ ∗ ≜ −M0 · (kz z̃) + (−M0q̃ + C0z +G0 − f +M0ż
∗). (3.6)

This control law ensures that the time derivative of the Lyapunov function is negative
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definite, as V̇c2 = −kq q̃T q̃− kz z̃
T z̃ < 0, in the absence of any constraints. However, the

control law τ ∗ cannot be realized in practice because the lumped system uncertainty

function f , which accounts for unmodeled dynamics and disturbances, is not available.

As introduced in Section 2.3, the SHLNN which is simple version of DNN is repre-

sented as

Φ(qNN ; θ) ≜ V T
1 ϕ(V T

0 qNN)

where qNN ∈ Rl0+1 denotes the NN input vector, Vi ∈ R(li+1)×li+1 , i ∈ [0, 1] de-

notes the weight matrix of ith layer and ϕ : Rl1 → Rl1+1 denotes the activation

function layer. The element-wise activation function layer consists of nonlinear func-

tion σ(·) and augmented 1 to combine the bias term in weight matrix (i.e. ϕ(x) =

[σ(x(1)), · · · , σ(x(l1)), 1]
T ). For further simplicity, let θ ≜ [θT1 , θ

T
0 ]

T ∈ RΞ denote the total

weight vector, where θi ≜ vec(Vi) ∈ RΞi denote the vectorized weights. Ξi = (li+1)·li+1

and Ξ = Ξ0 + Ξ1 denote the number of each layer and total weights, respectively.

Using this SHLNN, the desired controller τ ∗ can be approximated through ideal

weight vector θ∗ for a compact subset ΩNN ∈ Rl0+1 to ϵ-accuracy according to Theorem

2.3.1 such that supqNN∈ΩNN
∥Φ(qNN ; θ

∗) − τ ∗∥ = ϵ < ∞. The ideal weight vector θ∗

is typically assumed to be bounded. In this thesis, θ∗ is defined as a local optimal

point, rather than a global optimal point. Then using the estimated weight vector

θ̂ = [θ̂T1 , θ̂
T
0 ]

T of θ∗ = [θ∗T1 , θ∗T0 ]T , the desired controller τ ∗ ≈ −Φ(qNN ; θ
∗) − ϵ can be

approximated as follows:

τ ≜ −Φ(qNN ; θ̂). (3.7)

For further sections, let Φ∗ ≜ Φ(qNN ; θ
∗) and ϕ∗ ≜ ϕ(V ∗T

0 qNN), and Φ̂ ≜ Φ(qNN ; θ̂),

ϕ̂ ≜ ϕ(V̂ T
0 qNN) and ϕ̂′ = ∂ϕ̂/∂(V̂ T

0 qNN).

Using (3.4), (3.5), (3.6), and (3.7), the error dynamics can be derived as

˙̃q =− kq q̃ + z̃

˙̃z =− q̃ − kz z̃ +M−1
0 (Φ∗ − Φ̂ + ϵ).

(3.8)

The error dynamics (3.8) can be represented as a first-order system:

ξ̇ = Aξξ +Bξ(Φ
∗ − Φ̂ + ϵ) (3.9)
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where ξ ≜ [q̃T , z̃T ]T ∈ R2n denotes the augmented error, and

Aξ ≜

[
−kqIn In

−In −kzIn

]
, Bξ ≜

[
0n×n

M−1
0

]
.

Note that Aξ is a stable matrix, and ∥Bξ∥F <∞.

3.4.2 Weight Adaptation Laws

Weight Optimizer Design

Consider a positive definite objective function defined as

J(ξ; θ̂) ≜
1

2
ξTWξ

where W = W T > 0 is a weighting matrix. The weight norm constraints cj, j ∈ I
presented in following Section 3.5, are imposed during the weight adaptation process,

where I denotes the set of the imposed inequality constraints. The corresponding con-

strained optimization problem is formulated as

minimize
θ̂

J(ξ; θ̂), subject to cj(θ̂) ≤ 0, ∀j ∈ I. (3.10)

Here, tracking error ξ is considered a pre-defined data or parameter for this optimization

problem. The Lagrangian function is defined as

L(ξ, θ̂, [λj]j∈A) ≜ J(ξ; θ̂) +
∑
j∈A

λjcj(θ̂)

where λj denotes the Lagrange multiplier for each constraint, and A ≜ {j ∈ I | cj ≥ 0}
represents the active set.

The adaptation laws for θ̂ and [λ]j∈A are derived to solve the dual problem of (3.10)
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(i.e. minθ̂ max[λ]j∈A L(ξ, θ̂, [λ]j∈A)), as follows:

˙̂
θ = −α∂L

∂θ̂
= −α

(
∂J

∂θ̂
+
∑
j∈A

λj
∂cj

∂θ̂

)
, (3.11a)

λ̇j = βj
∂L

∂λj

= βjcj, ∀j ∈ A, (3.11b)

λj = max(λj, 0), ∀j ∈ A,

where α ∈ R>0 denotes the adaptation gain (also known as learning rate) and βj ∈ R>0

denotes the update rate of the Lagrange multipliers in A. The Lagrange multipliers

associated with inequality constraints are non-negative. When a constraint cj becomes

active (i.e. violated), the corresponding Lagrange multiplier λj increases from zero

to address the violation by adjusting the weights’ adaptation direction
˙̂
θ. Once the

violation is resolved and the constraint is no longer active (i.e. cj < 0), the multiplier

decreases gradually until it returns to zero. Note that this adaption law is similar

to the augmented Lagrangian method (ALM) in [33], where the adaptation law for

Lagrange multipliers is given by λj ← max(λj − cj/µ, 0), with µ ∈ R>0 being the

penalty parameter.

At steady state, where
˙̂
θ = 0 and λ̇j = 0, the KKT conditions defined in Theorem

2.2.1, are satisfied, i.e. ∂L/∂θ̂ = 0, cj ≤ 0, λj ≥ 0, and λjcj = 0. In other words, the

proposed optimizer updates the SHLNN weights and Lagrange multipliers in a way

that satisfies the KKT conditions. These conditions represent the first-order necessary

conditions for optimality, guiding the updates toward candidates for a locally optimal

point.

Calculation of the Exact Gradient of Objective Function

The adaptation law for θ̂ involves the gradient of the objective function with respect

to θ̂ (i.e. ∂J/∂θ̂); see (3.11a). Since the objective function depends on the state ξ of a

dynamic system, obtaining the gradient is not straightforward. Therefore, the forward

sensitivity method from [47] is employed to calculate the exact gradient of the objective

function.

By partially differentiating (3.9), the sensitivity equation of ξ with respect to θ̂ is

first obtained as

η̇ = Aξη −Bξ
∂Φ̂

∂θ̂
(3.12)
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Algorithm 1: Weight optimizer implementation.

input : ξ, θ̂, λj, η

output: θ̂, λj, η

1 Set A ← A∪ {j} for all cj ≥ 0;
2 Determine update matrix η̇ using (3.12);
3 Update η ← η + η̇ · Ts;

4 Determine update directions
˙̂
θ, [λ̇j]j∈A using (3.11a), (3.11b);

5 Update weight vector θ̂ ← θ̂ +
˙̂
θ · Ts;

6 Update multipliers [λj]j∈A ← [λj]j∈A + [λ̇j]j∈A · Ts;
7 [λj]j∈A ← max([λj]j∈A, 0);
8 Set A ← A− {j} for all λj = 0;

where η ≜ ∂ξ/∂θ̂ ∈ R2n×Ξ. Since the initial value of ξ is independent to θ̂, η|t=0 is a

zero matrix. The gradient of the objective function with respect to θ̂ is then obtained

as
∂J

∂θ̂
=

∂ξ

∂θ̂

T

Wξ = ηTWξ ∈ RΞ. (3.13)

Equations (3.12) and (3.13) can be decomposed for each layer as

η̇ =
[
η1 η0

]′
=Aξ

[
η1 η0

]
−Bξ

[
(Il2 ⊗ ϕ̂T ) V̂ T

1 ϕ̂′(Il1 ⊗ qNN
T )
]
.

and
∂J

∂θ̂
=

[
∂J/∂θ̂1

∂J/∂θ̂0

]
=

[
ηT1

ηT0

]
Wξ

where ηi ≜ ∂ξ/∂θ̂i ∈ R2n×Ξi . The exact gradient of the objective function is calculated

based on (3.13), with the value of η obtained by simulating the sensitivity equation

(3.12).

The proposed controller is implemented using Algorithm 1. For implementation in

the discrete-time domain, it is recommended to use a sufficiently small sampling time

Ts. If a large Ts is used, α and βj should satisfy the Armijo condition [33, Chap. 3

eq. (3.4)] to ensure that the objective function decreases.
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Figure 3.2: Weight norm constraints.

3.5 Weight Norm Constraint

The satisfaction of the weights’ boundedness is reformulated as a weight norm

constraints as shown in Fig. 3.2. The weight norm constraints are represented as follows:

cθ1(θ̂) ≜ ∥θ̂1∥2 − θ̄21 ≤ 0,

cθ0(θ̂) ≜ ∥θ̂0∥2 − θ̄20 ≤ 0,

where θ̄2i ∈ R>0 denotes the predefined weight norm bound for each layer i ∈ [0, 1].

The gradient of the constraints can be obtained easily as follows:

∂cθ0

∂θ̂
=

[
0Ξ1×1

2θ̂0

]
,

∂cθ1

∂θ̂
=

[
2θ̂1

0Ξ0×1

]
.

3.6 Stability Analysis

The following theorem proves the boundedness of the tracking error and the weight

estimation of the weights.

Theorem 3.6.1. For the dynamical system in (3.1), the proposed controller (3.7) and

the adaptation law (3.11) ensure the boundedness of the tracking error ξ and the weight

estimation θ̂, provided that control gains kq and kz satisfy (3.15).

Proof. The boundedness will be proved from the last layer to the first layer.
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Step 1: Boundedness of θ̂1, η1, ξ

For convenience, assume that all constraints are in the active set without loss of gener-

ality. If the constraints are not in the active set, the boundedness cannot be guaranteed,

but weights will be adapted to reduce the objective function until the constraints are

violated.

The dynamics of ξ can be represented as

ξ̇ = Aξξ +Bξ(−V̂ T
1 ϕ̂+ w(t))

where w(t) ≜ V ∗T
1 ϕ∗+ϵ is a lumped residual term, which is bounded as ∥w(t)∥ ≤ w̄ < 0.

On the other hand, the dynamics of η1 and θ̂1 are represented as

η̇1 =Aξη1 −Bξ(Il2 ⊗ ϕ̂T )

˙̂
θ1 =− α(ηT1 Wξ + 2λθ1 θ̂1).

According to Theorem 2.1.1, the boundedness of η1 can be obtained, since Aξ is stable

and the residual term −Bξ(Il2 ⊗ ϕ̂T ) is bounded.

Define the Lyapunov function V1 = (1/2)ξTPξ + (1/2α)θ̃T1 θ̃1, with the Lyapunov

equation AT
ξ P +PAξ = −Q, where Aξ < 0, P = P T > 0, and Q > 0. Using Proposition

2.2.1 (i.e. V̂ T
1 ϕ̂ = vec(V̂ T

1 ϕ̂) = vec(ϕ̂T V̂1) = (Il2 ⊗ θ̂T )vec(V̂1) = (Il2 ⊗ ϕ̂T )θ̂1), the time

derivative of V1 is

V̇1 =
1

2
ξT (AT

ξ P + PAξ)ξ + ξTP (−BξV̂
T
1 ϕ̂+Bξw(t)) + θ̂T1

(
− ηT1 Wξ − 2λθ1 θ̂1

)
=− 1

2
ξTQξ − ξTPBξ(Il2 ⊗ ϕ̂T )θ̂1 + ξT∆− θ̂T1 η

T
1 Wξ − 2λθ1 θ̂

T
1 θ̂1

≤− (1/2)λmin(Q)∥ξ∥2 + ∆̄∥ξ∥+ M̄∥ξ∥∥θ̂1∥ − 2λθ1∥θ̂1∥2

≤
(
− λmin(Q)

2
+

M̄

2

)
∥ξ∥2 + ∆̄∥ξ∥+

(
− 2λθ1 +

M̄

2

)
∥θ̃1∥2

(3.14)

where ∆ ≜ PBξw(t) and M ≜ −PBξ(Il2 ⊗ ϕ̂T ) +Wη1 which are bounded such that

∥∆∥ ≤ ∆̄ <∞ and ∥M∥F ≤ M̄ <∞, respectively.

By defining P = In, the eigenvalues of Q = −AT
ξ − Aξ are 2kq and 2kz, since Aξ

is a skew-symmetric matrix except for the diagonal entries. According to (3.14), if kq

and kz are provided that

min(kq, kz) > M̄/2, (3.15)
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and if λθ1 is increased sufficiently large such that 2λθ1 > M̄/2, due to the violation of

the cθ1 , the tracking error is bounded in

Θξ =

{
ξ

∣∣∣∣ ∥ξ∥ ≤ ∆̄

λmin(Q)− M̄/2

}
,

and the weight estimation θ∗1 is bounded in

Θθ̂1
= {θ̂ | ∥θ̂∥ ≤ θ̄1}.

The Lagrange multiplier λθ1 is also bounded, since λθ1 update halts once θ̂1 approaches

into the compact set Θθ̂1
, satisfying the constraint cθ1 .

Step 2: Boundedness of θ̂0, η0

The dynamics of η0 and θ̂0 are represented as

η̇0 =Aξη0 −BξV̂
T
1 ϕ̂′(I1 ⊗ qNN

T )

˙̂
θ0 =− α

(
ηT0 Wξ + 2λθ0 θ̂0

)
.

Also, according to Theorem 2.1.1, η0 is bounded since Aξ is a stable matrix and

−BξV̂
T
1 ϕ̂′(I1 ⊗ qNN

T ) is bounded. To obtain the invariance set of θ̂0, taking the time-

derivative of the Lyapunov function V0 = (1/2α)θ̂T0 θ̂0 yields:

V̇0 =θ̂T0 (−η0Wξ − 2λθ0 θ̂0)

≤∥θ̂0∥∥η0Wξ∥ − 2λθ0 θ̂
T
0 θ̂0

≤− 2λθ0∥θ̂0∥2 + ∥η0Wξ∥∥θ̂0∥.

Then, the invariance set can be represented as

Θθ̂0
= {θ̂0 | ∥θ̂0∥ ≤ ∥η0Wξ∥/λθ0}.

If λθ0 is generated sufficiently large due to the violation of cθ0 , the invariance set

Θθ̂0
converges to {θ̂0 | ∥θ̂0∥ ≤ θ̄0}, once the constraint cθ0 is satisfied. Therefore, the

Lagrange multiplier λθ0 is also bounded.
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Figure 3.3: Two-link manipulator model.

Remark 3.6.1. In the constrained optimization method, the corresponding method of

L2-regularization method is the quadratic penalty method, which replaces the con-

strained optimization problem into an unconstrained optimization problem by adding

the penalty term (1/2µ)
∑

r∈A c2r in the objective function. The penalty parameter

µ ∈ R>0 usually decreases over implementation for the convergence of the optimization

process. However, the decreased penalty term µ may alter the original objective func-

tion as the penalty term dominates the objective function. Therefore, L2-regularization

inherently has the analogous drawback of the quadratic penalty method in the selection

of the regularization coefficient λ.

3.7 Simulation Validation

3.7.1 Setup

The two-link manipulator model in [48] is employed for the simulation demonstra-

tion. In the system, the parameters qp, qdp, τp,mp, lp, lcp, bp, and fcp denote the joint

angle, desired joint angle, torque, mass, length, center of mass, viscous coefficient, and

friction coefficient, respectively, for link p ∈ [1, 2]. The values of the system parameters
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Table 3.1: System model parameters.

Symbol Description Link 1 Link 2

m1,m2 Mass of link 23.902 (kg) 3.88 (kg)

l1, l2 Length of link 0.45 (m) 0.45 (m)

lc1, lc2 COM of link 0.091 (m) 0.048 (m)

θ1, b2 Viscous coefficient 2.288 (Nms) 0.172 (Nms)

fc1, fc2 Friction coefficient 7.17 (Nm) 1.734 (Nm)

are given in Table 3.1. The reference signal of the q = [q1, q2]
T is defined as follows:

qd =

[
qd1

qd2

]
=

[
+cos(π/2t) + 1

− cos(π/2t)− 1

]
.

For the comparative study, three controllers were selected: the neuro-adaptive con-

troller with L2-regularization (NAC-L2) and with ϵ-modification (NAC-eMod), and

the proposed controller with constrained optimization (CoNAC). The performances

of the selected controllers are compared based on the tracking performances and the

dependencies of the parameters λ, ρ, and βj of NAC-L2, NAC-eMod, and CoNAC, re-

spectively. The square root of integrated squared error (ISE) (i.e.
√∫ T

0
∥ξ∥2 dt, where

T denotes a simulation termination time) is utilized to evaluate the tracking perfor-

mances. The parameter dependencies of the controllers were examined via various

values of the parameters. The values ranged from 0.001 to 1 across 10 samples.

The control laws of all three controllers were the same as defined in (3.7). The

adaptation law of NAC-L2 is derived by adding the squared weight term (1/2)λθ̂T θ̂

to the objective function such that JL2 = J + (1/2)λθ̂T θ̂, where λ ∈ R>0 denotes

the L2-coefficient. The adaptation law obtained via the gradient descent method is

subsequently adjusted by adding stabilizing term −αλθ̂ as follows:

˙̂
θ =

∂JL2

∂θ̂
= −α

(
∂J

∂θ̂
+ λθ̂

)
.

Note that this adaptation law derived based on L2-regularization method in deep learn-

ing is inherently the same as σ-modification in the adaptive control theory which adds

the term −ασθ̂, where σ ∈ R>0. For NAC-eMod, Similar to σ-modification, the stabi-
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Table 3.2: Quantitative comparison of square root of tracking ISE.

NAC-L2 NAC-eMod CoNAC (proposed)

Maximum 11.1753e-3 0.5603e-3 0.3439e-3

Upper quartile 1.7284e-3 0.5566e-3 0.3261e-3

Median 0.5898e-3 0.5519e-3 0.3240e-3

Lower quartile 0.5533e-3 0.5470e-3 0.3238e-3

Minimum 0.5434e-3 0.5434e-3 0.3235e-3

lizing function −αρ∥z̃∥θ̂ is added to the adaptation law as follows:

˙̂
θ = −α

(
∂J

∂θ̂
+ ρ∥z̃∥θ̂

)
where ρ ∈ R>0 denotes the ϵ-modification coefficient. By ∥z̃∥, the stabilizing function

proportionally increases as the tracking error z̃ increases. Therefore, the adaptation

attempts to reduce the tracking error mainly without the effect of the stabilizing func-

tion, if the tracking error is sufficiently regulated. The adaptation law of CoNAC is

presented in (3.11). Owing to the stabilizing functions, the weights of NAC-L2 and

NAC-eMod are biased, since the stabilizing functions drive the weights toward the

origin.

All controllers had the same control parameters except their crucial parameters

(i.e. λ, ρ and βj) as kq = 1.1, kz = 10, M0 = I2 and W = diag([5, 1, 15, 15]). The

parameters of the NNs were set l0 = 2, l1 = 16, l2 = 2, and α = 103 and the same

random seed was applied for the weight initialization. The NN input vector was set to

the desired trajectory qd, with the augmented 1 to incorporate the bias term in the

weight matrix, such that qNN = [qTd , 1]
T . For CoNAC, the parameters of the weight

norm constraints were set as θ̄0 = 10 and θ̄1 = 20. The sampling time of the simulation

and the simulation termination time were set to Ts = 10−4 and T = 10, respectively.

3.7.2 Results

As shown in Fig. 3.4, the maximum square root of tracking ISE of CoNAC is

smaller than the minimum square root of tracking ISEs of NAC-L2 and NAC-eMod

for all variations of the parameters. This is because NAC-L2 and NAC-eMod bias the

weights to the origin, due to the presence of the stabilizing functions. A quantitative
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Figure 3.4: Box-and-Whisker plot of the square root of the tracking ISEs of NAC-L2,
NAC-eMod and CoNAC across various parameter values.

comparison of the square root of tracking ISE is provided in Table 3.2.

For the detailed analysis, three values of the parameters (i.e. λ, ρ, βj ∈ [0.001, 0.45, 1]

) were selected as described in Fig. 3.5 and Fig. 3.6. As shown in Fig. 3.5a, increasing

λ reduces the weight norm of NAC-L2 by the stabilizing function −αλθ̂. Moreover, the

high dependency of NAC-L2 to the L2-regularization coefficient λ also can be observed.

Since the weight norm is decreased, NAC-L2 cannot generate sufficient control inputs,

resulting in a larger square root of tracking ISE, as shown in Fig. 3.6a.

On the other hand, NAC-eMod exhibits lower dependency on the ϵ-modification

coefficient ρ as shown in Fig. 3.5b and Fig. 3.6b. This is because stabilizing function

−αρ∥z̃∥θ̂ can be decreased once the tracking error z̃ is sufficiently regulated. However,

the bias of the weights to the origin still exists as described in Fig. 3.5b (i.e. smaller

weight norms are observed as ρ is increased.). Therefore, similar to NAC-L2, the biased

weights produce insufficient control input, resulting in a relatively larger square root

of tracking ISE than that of CoNAC, as described in Table 3.2.

Finally, the weight norm of CoNAC is smaller than those of NAC-L2 and NAC-eMod

as shown in Fig. 3.5c with better tracking performances. Even if the large βj is provided,

CoNAC can adjust the adaptation direction to satisfy the weight norm constraints

faster, according to (3.11b). Therefore, the lowest dependency on the update rate βj

is observed in CoNAC as shown in Fig. 3.5c and Fig. 3.6c. Note that βj of CoNAC

is the update rate for Lagrange multipliers while λ and ρ are the coefficients of the

stabilizing function that generates the biases of the weights. However, considering the
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Figure 3.5: Weight norms of NAC-L2, NAC-eMod and CoNAC.

implementation using a digital computer, excessively large βj should be avoided.

The details of the satisfaction of the weight norm constraints are shown in Fig. 3.7

for CoNAC with βj = 0.001. As the weight norms of each layer reach the constraint

boundary, the corresponding Lagrange multipliers are generated. Using the Lagrange

multipliers, the adaptation direction is adjusted toward the constraint satisfactory
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Figure 3.6: Tracking errors of NAC-L2, NAC-eMod and CoNAC.

point. The Lagrange multipliers disappear when the constraints are satisfied, and the

weights are adapted to optimize the original objective function without weight bias.

Furthermore, it is important to note that CoNAC shows enhanced tracking per-

formance with smaller weights than NAC-L2 and NAC-eMod. This implies that the

weights in CoNAC approach the different local optimal solution points from those of

NAC-L2 and NAC-eMod. Therefore, if the physical analysis of the system is available
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Figure 3.7: Weight norms and Lagrange multipliers of CoNAC (β = 0.001).

to predict the feasible maximum control inputs, CoNAC can find the local optimal

solution without unnecessary large control input by imposing the proper weight norm

constraints.

3.8 Conclusion

In this chapter, a constrained optimization-based neuro-adaptive controller (Co

NAC) with a single hidden layer neural network (SHLNN) and weight norm constraint

is presented for the uncertain Euler-Lagrange systems. The boundedness of the weights

is handled by formulating a constrained optimization problem with weight norm in-

equality constraints. Using the constrained optimization approach, the adaptation laws

of the weights and Lagrange multipliers are derived. The boundedness of the tracking

error and the weight estimation are analyzed via Lyapunov analysis. The simulation

results demonstrated that the proposed controller outperforms the existing methods

in terms of tracking performance and parameter dependency. In next chapter, CoNAC
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will be extended to handle input constraints and DNN.
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Chapter 4

CoNAC for Uncertain Euler–Lagrange Sys-

tems Under Weight and Input Constraints

4.1 Introduction

In this chapter, the constrained optimization-based neuro-adaptive controller (

CoNAC) framework is extended to address the input saturation problem. Besides the

boundedness of neural network (NN) weights, the other major issue is satisfying input

constraints, particularly in systems where actuators are subject to physical limita-

tions [49]. The unpredictable outputs of NNs can sometimes lead to excessively large

control inputs which may destroy the actuators or the system itself. This problem

is exacerbated in neuro-adaptive controllers (NACs) that attempt to cancel out sys-

tem dynamics using conventional methods like feedback linearization or backstepping.

In such cases, controllers may produce overly aggressive control inputs, even when the

system’s natural dynamics are stabilizing, leading to unnecessary saturation of the con-

trol inputs. The control input saturation is reformulated into convex input constraints,

then incorporated into the CoNAC. In addition, CoNAC presented in Chapter 3, is

extended by substituting the single hidden layer neural network (SHLNN) by deep

neural network (DNN).

4.2 Problem formulation

Consider an uncertain Euler-Lagrange system modeled as

M(q)q̈ + C(q, q̇)q̇ +G(q) + F (q) = h(τ) (4.1)

where q ∈ Rn denotes the generalized coordinate, and τ ∈ Rn denotes the control

input. The terms M(q) ∈ Rn×n, C(q, q̇) ∈ Rn×n, and G(q) ∈ Rn represent the unknown

system function matrices, while F (q) ∈ Rn denotes the external force. The function

h(·) ∈ Rn is a control input saturation function, where each element represents the

control input saturation for each element of τ . The gradient of h(·) with respect to τ
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is continuous and bounded, i.e. ∥∂h/∂τ∥F ∈ L∞.

The control input saturation function represents the inherent physical limitations

of the actuators. To account for these limitations, it is essential to incorporate physi-

cally motivated constraints into the controller design. Section 4.5 introduces candidate

constraints that can be applied to ensure compliance with these physical limitations.

Using user-designed nominal system matrices M0 > 0, C0, and G0, (4.1) can be

reformulated as

M0q̈ + C0q̇ +G0 = h(τ) + f(q, q̇, q̈) (4.2)

where f(q, q̇, q̈) ≜ −∆M(q)q̈ − ∆C(q, q̇)q̇ − ∆G(q) − F (q) ∈ Rn is the lumped sys-

tem uncertainty function. Here, ∆M(q) ≜ M(q) −M0, ∆C(q, q̇) ≜ C(q, q̇) − C0, and

∆G(q) ≜ G(q)−G0.

The function f acts like an external disturbance, leading to a poor performance

index and potential instability. The control objective is to develop a neuro-adaptive

controller that enables q to track a continuously differentiable desired trajectory qd(t) :

R → Rn, compensating for the unknown function f while addressing the imposed

constraints (e.g. weight boundedness and input saturation).

4.3 Existing Works to Prevent Input Saturation

To address input saturation, one may consider the projection operator in Section

3.3.1 as one of solutions. However, the projection operator can not be simply applied

since the NNs are highly nonlinear and non-convex function. Note that the operator is

used to project adaptation direction on given convex set.

On the other hand, many studies introduced auxiliary systems. These systems mit-

igated the effects of control input saturation by modifying the control strategy when

saturation occurred. For instance, in [19,20,50], auxiliary states were generated when-

ever input saturation was detected, and the auxiliary states were incorporated into the

adaptation law to adjust the NN weights accordingly. For details, the auxiliary systems

are generally designed as

ζ̇ = Aζζ +Bζ∆τ

where ζ is the auxiliary state, Aζ is Hurwitz matrix, Bζ is control gain matrix, and

∆τ(i) = τ(i) − τsat,(i) is saturated control input of each control channel where τsat,(i)

denotes maximum or minimum value of τ(i). Thus, the auxiliary state ζ is generated

when the control input τ exceeds the saturation limit τsat. Using the auxiliary state,
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Figure 4.1: Architecture of the constrained optimization-based neuro-adaptive con-
troller (CoNAC).

the feedback signal for the adaptation law is modified as

˙̂
θ = γ(ξ) → ˙̂

θ = γ(ξ + ζ)

where γ(·) denotes arbitrary adaptation law and ξ denotes tracking error which is

typically used as feedback signal for adaptation process for NACs. This approach helps

the controller reduce input saturation by indirectly regulating the auxiliary states.

Alternatively, auxiliary states can also be used as feedback terms in the control law

to directly compensate for the effects of input saturation constraints, as demonstrated

in [22, 23, 51]. In addition, the NN was used to approximate the desired control input,

which compensate for input saturation in [17].

However, these approaches typically handle input bound constraints on a per-input

basis, and may not account for more complex and nonlinear constraints, like input norm

constraints, which are commonly found in physical systems such as robotic actuators

or motor systems due to their power limitations.

4.4 CoNAC with Weight and Input Constraints

The architecture of the proposed CoNAC is illustrated in Fig. 4.1, consisting of:

a reference generator, a DNN that functions as NAC, and a weight optimizer for the

DNN. The simple version of the CoNAC is introduced in Chapter 3 ahead with the

SHLNN instead of the DNN and the weight norm constraints. We will extend it to the

DNN with the weight and input constraints in this chapter.
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4.4.1 Control Law Development

The system dynamics (4.2) can be represented as

q̇ = z,

ż = −M−1
0 C0z −M−1

0 G0 +M−1
0 h(τ) +M−1

0 f,
(4.3)

where z ≜ q̇.

Similar to the control law development in Section 3.4.1, the reference generator

generates the desired trajectory z∗ ≜ −kq q̃ + q̇d for z ≜ q̇, where q̃ ≜ q − qd and

kq ∈ R>0. Then the desired stabilizing controller can be designed as

τ ∗ = −M0(kz z̃ + q̃) + C0z +G0 − f +M0ż
∗ (4.4)

where z̃ ≜ z − z∗, kz ∈ R>0, and kz ∈ R>0. Note that the control law τ ∗ cannot be

realized because of f .

The DNN presented in Section 2.3, is defined as

Φ(qNN ; θ) ≜ V T
k ϕk(V

T
k−1 · · ·ϕ2(V

T
1 ϕ1(V

T
0 qNN︸ ︷︷ ︸
Φ0

)

︸ ︷︷ ︸
Φ1

) · · · )

︸ ︷︷ ︸
Φk−1

)

︸ ︷︷ ︸
Φk

where qNN denotes the NN input vector, Vi ∈ R(li+1)×li+1 is the weight matrix of the ith

layer, and ϕi : Rli → Rli+1 represents the activation function of the ith layer. For the

simplicity, the weights are vectorized in θ ≜ [θi]i∈[k,··· ,0] ∈ RΞ consisting of vectorized

weights of each layer such that θi ≜ vec(Vi) ∈ RΞi , where Ξ ≜
∑

i∈[k,···0] denotes the

total number of weights and Ξi ≜ (li + 1)li+1 denote the number of weights in the ith

layer, respectively.

According to Theorem 2.3.1, the desired control law τ ∗ can be approximated by the

DNN with the ideal weight vector θ∗ on a compact subset ΩNN ∈ Rl to ϵ-accuracy, such

that supqNN∈ΩNN
∥Φ(qNN ; θ

∗)− τ ∗∥ = ϵ <∞. The ideal weight θ∗ is typically assumed

to be bounded, i.e. ∥θ∗∥ ≤ θ̄ <∞. In this thesis, θ∗ is defined as a local optimal point,

rather than a global optimal point.
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Then, the desired control law can be represented as follows:

τ ∗ =− (Φ∗ + ϵ),

which is estimated online by

τ =− Φ̂, (4.5)

where Φ̂ ≜ Φ(qNN ; θ̂), and θ̂ is the estimated weight vector for θ∗.

Using (4.3), (4.4), (4.5), and the definition of z̃ the error dynamics can be derived

as
˙̃q =− kq q̃ + z̃

˙̃z =− q̃ − kz z̃ +M−1
0 (Φ∗ − h(Φ̂) + ϵ).

(4.6)

The error dynamics (4.6) can be represented as a first-order system:

ξ̇ = Aξξ +Bξ(Φ
∗ − h(Φ̂) + ϵ) (4.7)

where ξ ≜ [q̃T , z̃T ]T ∈ R2n denotes the augmented error, and

Aξ ≜

[
−kqIn In

−In −kzIn

]
, Bξ ≜

[
0n×n

M−1
0

]
.

Note that Aξ is a stable matrix, and ∥Bξ∥F < ∞. For further sections, ϕ∗
i ≜ ϕi(Φ

∗
i−1)

and ϕ∗′
i = ∂ϕ∗

i /∂Φ
∗
i−1, and ϕ̂i ≜ ϕi(Φ̂i−1) and ϕ̂′

i = ∂ϕ̂i/∂Φ̂i−1.

4.4.2 Weight Adaptation Laws

The adaptation laws are same as the previous Section 3.4.2 and represented as

follows:

˙̂
θ = −α∂L

∂θ̂
= −α

(
∂J

∂θ̂
+
∑
j∈A

λj
∂cj

∂θ̂

)
, (4.8a)

λ̇j = βj
∂L

∂λj

= βjcj, ∀j ∈ A, (4.8b)

λj = max(λj, 0), ∀j ∈ A,
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where L ≜ J(ξ; θ̂)+
∑

j∈A λjcj(θ̂) denotes Lagrangian function consisting of the original

objective function J ≜ (1/2)ξT ξ, the inequality constraint cj, j ∈ I and Lagrange

multiplier λj, where I is the set of imposed constraints, A ≜ {j ∈ I | cj ≥ 0}
represents the active set. Moreover, α ∈ R>0 denotes the adaptation gain (learning

rate) and βj ∈ R>0 denotes the update rate of the Lagrange multipliers in A.
As presented in Section 3.4.2, the gradient of the objective function with respect to

the weights can be represented as

∂J

∂θ̂
=


∂J/∂θ̂k

...

∂J/∂θ̂0

 =
∂ξ

∂θ̂

T

W
∂ξ

∂θ̂

where W ∈ R2n×2n is a positive weight matrix, and ∂ξ/∂θ̂ is the sensitivity of the

weights to the augmented error. The sensitivity of the weights can be obtained by

simulating the sensitivity equation as follows:

η̇ =
[
ηk ηk−1 · · · η0

]′
= Aξ

[
ηk · · · η0

]
−Bξ

∂h

∂τ

[
(Ilk+1

⊗ ϕ̂T
k ) · · · (·)

] (4.9)

with zero initial value of η, since the initial ξ is independent of the weights.

The adaptation is implemented using Algorithm 2. For implementation in the

discrete-time domain, it is recommended to use a sufficiently small sampling time Ts. If

a large Ts is used, α and βj should satisfy the Armijo condition [33, Chap. 3 eq. (3.4)]

to ensure that the objective function decreases.

4.5 Constraint Candidates

This section introduces weight and potential input constraints that can be used in

the CoNAC. The controller can handle any combination of the following constraints,

provided they meet the specified assumptions.

Assumption 4.5.1. The constraint functions cj(θ̂), ∀j ∈ I are convex in the τ -space

and satisfy cj(0) ≤ 0 and cj(θ
∗) ≤ 0.

Assumption 4.5.2. The selected constraints satisfy the Linear Independence Con-

straint Qualification (LICQ) defined in Definition 2.2.2.
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Algorithm 2: Weight optimizer implementation.

input : ξ, θ̂, λj, η

output: θ̂, λj, η

1 Set A ← A∪ {j} for all cj ≥ 0;
2 Determine update matrix η̇ using (4.9);
3 Update η ← η + η̇ · Ts;

4 Determine update directions
˙̂
θ, [λ̇j]j∈A using (4.8a), (4.8b);

5 Update weight vector θ̂ ← θ̂ +
˙̂
θ · Ts;

6 Update multipliers [λj]j∈A ← [λj]j∈A + [λ̇j]j∈A · Ts;
7 [λj]j∈A ← max([λj]j∈A, 0);
8 Set A ← A− {j} for all λj = 0;

Figure 4.2: Weight norm constraints.

4.5.1 Weight Norm Constraint

The weight norm constraint cθ ≜ [cθi ]i∈[0,··· ,k] ∈ Rk+1 limits the maximum norm of

each layer’s weight vector as shown in Fig. 4.2, where

cθi = ∥θ̂i∥2 − θ̄2i ≤ 0 (4.10)

with θ̄i < ∞ denoting the maximum allowable norm for θ̂i. The gradient of cθ with

respect to θ̂ is given by

∂cθ

∂θ̂
≜


(∂cθ0/∂θ̂)

T

...

(∂cθk/∂θ̂)
T

 = 2 ·


0 0 · · · θ̂T0
...

...
. . .

...

0 θ̂Tk−1 · · · 0

θ̂Tk 0 · · · 0

 ∈ R(k+1)×Ξ. (4.11)
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Figure 4.3: Input bound constraints.

4.5.2 Input Bound Constraint

Most physical systems have control input limits due to electrical and mechanical

limitations. These are expressed as cτ ≜ [cτ i ]i∈[1,··· ,n] and cτ ≜ [cτ i ]i∈[1,··· ,n], where

cτ i = τ(i) − ττ i ≤ 0, cτ i = ττ i − τ(i) ≤ 0 (4.12)

with ττ i and ττ i representing the maximum and minimum control input bounds, re-

spectively. For the case of cτ1 is shown in Fig. 4.3. The gradients of cτ and cτ with

respect to θ̂ are given by

∂cτ

∂θ̂
≜


(∂cτ1/∂θ̂)

T

...

(∂cτn/∂θ̂)
T

 = −∂Φ̂

∂θ̂
= −

[
(Ilk+1

⊗ ϕ̂T
k ) · · · (·)

]
∈ Rn×Ξ,

∂cτ

∂θ̂
≜


(∂cτ1/∂θ̂)

T

...

(∂cτn/∂θ̂)
T

 = +
∂Φ̂

∂θ̂
= +

[
(Ilk+1

⊗ ϕ̂T
k ) · · · (·)

]
∈ Rn×Ξ.

(4.13)

4.5.3 Input Norm Constraint

Consider the control input τ as the torque of each actuator corresponding to its

generalized coordinate. Since torque is typically linearly proportional to current, actu-

ators that share a common power source are often subject to total current limitations.

This can be captured by the following inequality constraint:

cu = ∥τ∥2 − τ̄ 2 ≤ 0 (4.14)
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Figure 4.4: Input norm constraints.

with τ̄ ∈ R>0 denoting the maximum allowable control input magnitude as shown in

Fig. 4.4. This input norm constraint is also commonly applied in current and torque

control problems for electric motors [52]. The gradients of cu with respect to θ̂ are given

by
∂cu

∂θ̂
= −

n∑
i=1

2τ(i)

(
rowi

(
− ∂Φ̂

∂θ̂

))T

= τT (Ilk+1
⊗ ϕ̂T

k ) ∈ RΞ. (4.15)

It should be noted that constraints (4.12) and (4.14) cannot be imposed simultaneously,

as their gradients (4.13) and (4.15) are linearly dependent, violating the LICQ condition

(see Definition 2.2.2).

4.6 Stability Analysis

Before conducting the stability analysis, let θ̃ ≜ [θ̃i]i∈[0,··· ,k], where θ̃i ≜ θ̂i − θ∗i

represents the weight estimation error. The following Lemmas are introduced for the

stability analysis.

Lemma 4.6.1. If Assumptions 4.5.1 and 4.5.2 are satisfied, the angle between ∂cj/∂θ̂k

and θ̂k is positive when cj is active set, i.e. (∂cj/∂θ̂k)
T θ̂k > 0.

Proof. Since τ = −Φ̂, using Proposition 2.2.1, a linear map T (·) : θ̂k → τ can be

derived as follows:

τ =− Φ̂ = −vec(Φ̂) = −vec(V̂kϕ̂k)

=− (Ilk+1
⊗ ϕ̂T

k )vec(V̂k) = −(Ilk+1
⊗ ϕ̂T

k )θ̂k = T (ϕ̂k)θ̂k.
(4.16)
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Figure 4.5: Convexity of input constraints.

Therefore, since the linear map is affine map, the convexity of the input constraints

in τ -space (assumed in Assumption 4.5.1) holds in θ̂k-space as well as discussed in

Section 2.2.3, implying that (∂cj/∂θ̂k)
T θ̂k > 0 (see Lemma 2.2.1). The preservation of

convexity is illustrated in Fig. 4.5.

Lemma 4.6.2. If cj(θ̂), ∀j ∈ I\{θi}i∈[0,··· ,k] satisfies Assumption 4.5.1, then ∥∂cj/∂θ̂i∥
, for all i ∈ [k−1, · · · , 0], is bounded, provided the norms of θ̂i, for all i ∈ [k, · · · , i+1],

remain bounded.

Proof. The derivative of cj, ∀j ∈ I \ {θi}i∈[0,··· ,k], with respect to θ̂i is represented as

∂cj

∂θ̂i
=

∂cj
∂τ

∂τ

∂Φ̂

∂Φ̂

∂θ̂i

where ∂τ/∂Φ̂ = −In, which is bounded. From the linear mapping in (4.16), τ is bounded

as long as θ̂k is bounded (by the condition of the lemma), and ∥ϕk(·)∥ is bounded due

to the properties of the activation functions. By Assumption 4.5.1, the function cj is

convex. The convex function has a bounded derivative with respect to τ , since τ is a

bounded variable (i.e. ∂cj/∂τ is bounded). Furthermore, ∂Φ̂/∂θ̂i is bounded, provided

that the norms of θ̂i, ∀i ∈ [k, · · · , i + 1], are bounded. This can be verified using the

definition of ∂Φ̂/∂θ̂i given in (2.2). Consequently, ∥∂cj/∂θ̂i∥, ∀j ∈ I \ {θi}i∈[0,··· ,k], is
bounded, when θ̂i, ∀i ∈ [k, · · · , i+ 1] are bounded.
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The following theorem shows that θ̂ and ξ are bounded.

Theorem 4.6.1. For the dynamical system in (4.1), the neuro-adaptive controller (4.5)

and weight adaptation laws (4.8) ensure the boundedness of the augmented error ξ and

the weight estimate θ̂. This holds with the weight norm constraint (4.10) and input

constraints satisfying Assumption 4.5.2 and 4.5.2, provided that the control gains kq

and kz satisfy (4.18).

Proof. The boundednesses of θ̂, ξ, and η are analyzed recursively from the last kth layer

to the first layer of Φ̂. The step-by-step analysis is described as follows.

Step 1: Boundedness of θ̂k, ηk, and ξ

The boundedness of ξ follows from (4.7), using Theorem 2.1.1, since Aξ is a stable

matrix and the term Bξ(Φ
∗ − h(Φ̂) + ϵ) is bounded due to ∥Bξ∥F , ∥V ∗

k ∥F , ∥ϕ(·)∥,
∥h(·)∥, and ∥ϵ∥ <∞.

Assume that all constraints are in active set A without loss of generality. The

dynamics of ηk and θ̂k can be decomposed from (4.8a) and (4.9) as

η̇k =Aξηk −Bξ
∂h

∂τ

∂Φ̂

∂θ̂k
= Aξηk −Bξ

∂h

∂τ
(Ilk+1

⊗ ϕ̂T
k )

˙̂
θk =− α

[
ηTk Wξ +

∑
j∈A

λj
∂cj

∂θ̂k

]

According to Theorem 2.1.1, ∥ηk∥F is bounded, since Aξ is a stable matrix and the

term −Bξ(∂h/∂τ)(Ilk+1
⊗ ϕ̂T

k ) is also bounded.

Let V : R2n × RΞ → R>0 denote the Lyapunov function:

V =
1

2
ξTPξ +

1

2α
θ̂Tk θ̂k,

with the Lyapunov equation AT
ξ P + PAξ = −Q, where Aξ < 0, P = P T > 0, and

Q > 0. Taking the time derivative of V yields:

V̇ = −1

2
ξTQξ + ξTPB(V ∗T

k ϕ∗
k − h(τ) + ϵ)− θ̂Tk

(
ηkWξ +

∑
j∈A

λj
∂cj

∂θ̂k

)
.

By applying the boundedness of ∆ ≜ PB(V ∗T
k ϕ∗

k − h(τ) + ϵ) and M ≜ ηkW , where
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∥∆∥ ≤ ∆̄ <∞ and ∥M∥F ≤ M̄ <∞, this simplifies to:

V̇ ≤
(
−λmin(Q)

2
+

M̄

2

)
∥ξ∥2 + ∆̄∥ξ∥+ M̄

2
∥θ̂k∥2 −

∑
j∈A

λj θ̂
T
k

∂cj

∂θ̂k
.

Representing the term ∂cθk/∂θ̂k in the last inequality as ∂cθk/∂θ̂k = 2θ̂k and using the

result provided in (4.11), V̇ can be rewritten as

V̇ ≤(·) +
(
− 2λθk + M̄/2

)
∥θ̂k∥2 −

∑
j∈A\{θi}i∈[0,··· ,k]

λj θ̂
T
k

∂cj

∂θ̂k︸ ︷︷ ︸
>0, by Lemma4.6.1 and Assumption4.5.2

≤
(
− λmin(Q)/2 + M̄/2

)
∥ξ∥2 + ∆̄∥ξ∥+

(
− 2λθk + M̄/2

)
∥θ̂k∥2

(4.17)

Define P = I2, leading to Q = −AT
ξ − Aξ. Consequently, the minimum eigenvalues

λmin(Q) is determined by 2min(kq, kz), as follows from the structure of the matrix Aξ.

From (4.17), if the control gains kq and kz are chosen sufficiently large to satisfy the

condition:

min(kq, kz) > M̄/2 (4.18)

and if the Lagrange multiplier λθk for the weight norm constraint of the kth layer is

increased sufficiently, such that

−2λθk + M̄/2 < 0,

(as dictated by (4.8b) when the corresponding constraint is violated, i.e. cθk = ∥θ̂k∥2−
θ̄2k > 0), then both ξ and θ̂k will remain bounded within the compact sets Θξ and Θθ̂k

,

defined as

Θξ =

{
ξ

∣∣∣∣ ∥ξ∥ ≤ 2∆̄

λmin(Q)− M̄

}
and

Θθ̂k
= {θ̂k | ∥θ̂k∥ ≤ θ̄k}.

The increase of the Lagrange multiplier λθk will halt once θ̂k reaches the compact set

Θθ̂k
. Thus, the Lagrange multiplier λθk is bounded.

The boundedness of the Lagrange multipliers λj, ∀j ∈ A \ {θi}i∈[0,··· ,k], can be ac-

cessed by considering the convexity of the constraints in θ̂k-space. The boundedness
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of the remaining Lagrange multipliers associated with the weight norm constraints,

λθr , ∀r ∈ [0, · · · , k − 1], will be examined in Step i. Based on Assumption 4.5.1

and Lemma 4.6.1, the equality constraints cj ≤ 0, ∀j ∈ A \ {θi}i∈[0,··· ,k], for con-

vex sets Θcj in θ̂k-space. Let Θc ≜ ∩j∈A\{θi}i∈[0,··· ,k]Θcj represent the intersection of

these convex sets, which also contains the origin. If λj increases sufficiently such that

V̇ ≈ −
∑

j∈A\{θi}i∈[0,··· ,k]
λj θ̂

T
k (∂cj/∂θ̂k) < 0, then V , and consequently ∥θ̂k∥, will de-

crease until θ̂k reaches Θξ ∩ Θθ̂k
∩ Θc. Once θ̂k hits the boundary of Θc, the Lagrange

multipliers will cease to increase, thus ensuring their boundedness.

Step i: Boundedness of θ̂i and ηi, i ∈ [k − 1, · · · , 0]

The boundedness of the Frobenius norm of the gradient ∂Φ̂/∂θ̂i can be obtained from

its definition in (2.2). This relies on the fact that the boundedness of ∥θ̂i∥, ∀i ∈
[k, · · · , i + 1], was already shown in the previous step (i.e. Step 1 to Step i + 1) and

the activation functions ϕ̂i and their derivative ϕ̂′
i are bounded.

The dynamics of ηi and θ̂i for all i ∈ [k − 1, · · · , 0] are represented as

η̇i = Aξηi −Bξ
∂h

∂τ

∂Φ̂

∂θ̂i

and
˙̂
θi = −α

[
ηTi Wξ + 2λθi θ̂i +

∑
j∈A\{θi}i∈[0,··· ,k]

λj
∂cj

∂θ̂i

]
.

According to Theorem 2.1.1, ∥ηi∥F is bounded because Aξ is a stable matrix and the

terms ∥Bξ∥, ∥(∂h/∂τ)∥F , and ∥∂Φ̂/∂θ̂i∥F are bounded. When λθi is generated due to a

violation of the weight norm constraint, θ̂i remains bounded because the term −2αλθi is

stable, and the residual terms ∥ηiWξ∥, λj, and ∥(∂cj/∂θ̂i)∥F for all j ∈ A\{θi}i∈[0,··· ,k]
are bounded, as demonstrated in Step 1 and by Lemma 4.6.2. The boundedness of each

λθi also can be obtained, assuming that λθi is sufficiently increased regulating ∥θi∥ into
the origin until cθi is satisfied.

Therefore, starting from the boundedness of ξ, θ̂k, and ηk in the kth layer, the

boundednesses of θ̂i and ηi for the remaining layers i ∈ [0, · · · , k−1] can be established

recursively, down to the input layer (i = 0). Thus, θ̂, ξ, and η are bounded because

θ̂i, ηi, ∀i ∈ [0, · · · , k] and ξ are bounded. Furthermore, since the estimated weight

vector θ̂ is bounded, the weight estimation error θ̃ is also bounded, as θ∗ is bounded

according to the universal approximation theorem.
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4.7 Simulation Validation

4.7.1 Setup

The proposed CoNAC was validated using a two-link manipulator model, as de-

picted in Fig. 4.6, adapted from [48]. The parameters qp, qdp, τp,mp, lp, lcp, bp, and fcp

denote the joint angle, desired joint angle, torque, mass, length, center of mass, vis-

cous coefficient, and friction coefficient, respectively, for link p ∈ [1, 2]. The values of

the system model parameters are provided in Table 4.1. The desired trajectory for

q = [q1, q2]
T was defined as

qd(t) =

[
qd1

qd2

]
=

[
+cos(0.49πt) + 1

− cos(0.49πt)− 1

]
.

The control input saturation function was defined as h(τ) ≜ τ/∥τ∥ · SSFU
L(∥τ∥), where

smooth saturation function (SSF) was adopted from [53] and is given by

SSFU
L(∥τ∥) =

∥τ∥
(1 + (∥τ∥/τ̄)p)1/p

. (4.19)

with p being the smoothing factor. The effect of p and the boundedness of ∥∂h/∂τ∥F
is shown in Fig. 4.7. The parameters of the control input saturation function were

selected as p = 100 and τ̄ = 50.

In addition to this physically imposed control input saturation, the input norm

constraint (4.14) was imposed to ensure that the control input τ stays within the

unsaturation region of h(τ) and to prevent inefficient use of the input. With a suf-

ficiently large value for p, the input norm constraint essentially matches the control

input saturation function. Note that among the selected controllers given below, only

the proposed CoNAC can rigorously handle this input norm constraint.

Four controllers were examined for a comparative study. The first was the Backstep-

ping Controller (BSC), used as the baseline. The second was the DNN-based Backstep-

ping Controller (DNN-BSC), an existing neuro-adaptive control method where a DNN

was employed to learn and compensate for the lumped system uncertainty function f

in the BSC. While this method addressed the weight norm constraint via a projection

operator, it did not account for either the input norm or input bound constraints. The
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Figure 4.6: Two-link manipulator model.

Table 4.1: System model parameters.

Symbol Description Link 1 Link 2

m1,m2 Mass of link 23.902 (kg) 3.88 (kg)

l1, l2 Length of link 0.45 (m) 0.45 (m)

lc1, lc2 COM of link 0.091 (m) 0.048 (m)

b1, b2 Viscous coefficient 2.288 (Nms) 0.172 (Nms)

fc1, fc2 Friction coefficient 7.17 (Nm) 1.734 (Nm)

third was DNN-BSC augmented with an auxiliary system presented in [19,20,50] (DNN-

BSC-A), which handled the (linear) input saturation constraint but not the nonlinear

input norm constraint. As a result, an approximation of the input norm constraint was

used as an input bound constraint. Lastly, the proposed controller, CoNAC, rigorously

considered system uncertainties, the weight norm constraint, and input constraints

within a constrained optimization framework. The properties of these four controllers

are summarized in Table 4.2.

The BSC used the control law defined in (4.4). Since BSC did not consider the

unknown system dynamics, the approximation term f̂ was set to zero (i.e. f̂ = [0, 0]T ).

The control law for DNN-BSC was the same as BSC, but the unknown system dynam-

ics were approximated by a DNN i.e. f̂ ≈ Φ̂. The adaptation law for DNN-BSC, as
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Figure 4.7: Effect of parameter p in the control input saturation function h and bound-
edness of ∥∂h/∂τ∥F .

Table 4.2: Properties of the controllers used in simulation.

Handling Capability

System Weight Norm Input Norm

Uncertainty Constraint Constraint

BSC X X X

DNN-BSC O
O

X
(by projection)

DNN-BSC-A O
O △

(by projection) (by aux. system)

CoNAC O
O O

(by optimization) (by optimization)

presented in [28], was defined by

˙̂
θ = ProjΩ[α(∂Φ̂/∂θ̂)M

−1
0 z̃], (4.20)

where ProjΩ(·) is the projection operator defined in (3.3), which projects an input

vector onto a convex set Ω. The convex set was defined as Ω ≜ {Ω0 ∩ · · · ∩ Ωk}, where
Ωi ≜ {θ̂i | cbi ≤ 0}, ∀i ∈ [0, · · · , k], representing the weight norm constraint (4.10).

The control law for DNN-BSC-A was the same as DNN-BSC, but with an auxiliary

system to compensate for control input violations. Since the auxiliary system handled
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only the input bound constraint, not the more complex input norm constraint (4.14),

an approximated version of the input norm constraint was used as an input bound

constraint (4.12) with τ i = −τ i = (τ̄ /
√
2+ τ̄)/2. The comparison between the original

input norm constraint and its approximation is shown in Fig. 4.12. The auxiliary system

is defined as ζ̇ = Aζζ + Bζ∆τ, ζ|t=0 = 0, where ζ ∈ Rn denotes the auxiliary state,

Aζ = −[20, 0; 0; 20], Bζ = [10, 0; 0, 10], and ∆τ(i) = τ(i) − sat(τ(i), τ i, τ i). The auxiliary

state variables were used in the adaptation law (4.20) by substituting z̃ with z̃ + ζ.

The proposed CoNAC directly approximated the control law using the DNN as

defined in (4.5). The update rates for the Lagrange multipliers were set as βj = 0.1.

The weight matrix W was selected as W = diag([5, 1, 15, 15])].

For all DNN-based controllers (DNN-BSC, DNN-BSC-A, and CoNAC), the DNN

input vector qNN was set as the desired trajectory for q, i.e. qNN = [qd
T , 1]T with the

augmented scalar 1 included to account for the bias term in the weight matrix. Each

DNN architecture had two hidden layers with eight nodes (i.e. k = 2, l0 = 2, l1 = 8, l2 =

8, l3 = 2), and the adaptation gain was set to α = 103. The constraint parameters were

θ̄0 = 20, θ̄1 = 30, θ̄2 = 40, and τ̄ = 50 (from Eq. (4.19)). The control parameters for

all the controllers were set as kq = 1.1, kz = 10,M0 = I2, C0 = I2, G0 = [0, 0]T . The

sampling time of the simulations was selected as Ts = 10−4.

4.7.2 Results

System Uncertainty Handling

The tracking results of the selected controllers are shown in Fig. 4.8 and Fig. 4.9.

To demonstrate the effectiveness of using DNNs for compensating the lumped system

uncertainty function f , the gains kq and kz for BSC were intentionally selected as small

values, resulting in a weak ability to handle these uncertainties. As a result, BSC failed

to track the reference trajectory, as shown in Fig. 4.8a.

By leveraging the DNN to compensate for the lumped system uncertainty within the

BSC, DNN-BSC achieved improved tracking performance compared to BSC, as seen in

Fig. 4.8b. Fig. 4.9a shows that DNN-BSC-A enhanced tracking performance for q2, but

tracking for q1 remained unsatisfactory due to incomplete constraint handling, which

will be discussed in detail in Section 4.7.2.

Finally, CoNAC, which directly approximates the stabilizing control law along with

the compensation term, demonstrated satisfactory tracking performance across both
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Figure 4.8: Comparison of the tracking performance of BSC and DNN-BSC.

states, as illustrated in Fig. 4.9b.

Input Norm Constraint Handling

The resulting control input τ and physically saturation control input h(τ) for the

selected controllers are shown in Fig. 4.10 and Fig. 4.11. As illustrated in Fig. 4.10a,

BSC did not violate the input norm constraint (i.e. τ = h(τ)). However, in DNN-

BSC, the added compensation term from the DNN caused violations of the input norm

constraint (i.e. τ > h(τ)) at several points; see Fig. 4.10b. This failure to account

for the input norm constraint led to oscillations in the control input τ . The DNN
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Figure 4.9: Comparison of the tracking performance of DNN-BSC-A and CoNAC.

adaptation process attempted to increase the weights to reduce the residual errors that

were not constrained by saturation, but after saturation ceased, the control input had

to rapidly adjust back to realistic levels, leading to oscillatory behavior. Such high-

frequency oscillations may induce instability in the control system or cause fatigue in

the actuators.

On the other hand, both DNN-BSC-A and CoNAC successfully handled their im-

posed input constraints, as shown in Fig. 4.11a and Fig. 4.11b, respectively, without

causing notable oscillations in the control input τ even after the input constraint was

activated. However, the tracking performance of DNN-BSC-A was lower than that of

DNN-BSC and CoNAC, as the auxiliary system used in DNN-BSC-A approximated
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Figure 4.10: Comparison of the control input τ and the physically saturated control
input h(τ) of BSC and DNN-BSC.

the input norm constraint with an input bound constraint, creating a rectangular con-

straint in the τ -space (see Fig. 4.12). In contrast, CoNAC satisfied the nonlinear input

norm constraint and produced the physically maximum control input, resulting in im-

proved tracking performance.

It is also important to note that the control input trajectory in DNN-BSC-A de-

pends on the dynamics of the auxiliary system. The auxiliary system regulates the

violated control input after sufficient auxiliary state ζ is generated to compensate for

the violation. This can be observed in Fig. 4.12, where DNN-BSC-A exhibited minor

violations of the input bound constraint. In contrast, CoNAC satisfied the constraint

– 54 –



0 2 4 6 8 10

-50

0

50

0 2 4 6 8 10

-4
-2
0
2
4
6

-50 0 50

-50

0

50

2 2.5 3

0

100

200

6.5 7 7.5

0

50

(a) DNN-BSC-A

0 2 4 6 8 10

-50

0

50

0 2 4 6 8 10

-4
-2
0
2
4
6

-50 0 50

-50

0

50

2 2.5 3

0

100

200

6.5 7 7.5

0

50

(b) CoNAC

Figure 4.11: Comparison of the control input τ and the physically saturated control
input h(τ) of DNN-BSC-A and CoNAC.

without being affected by such dynamics, as its Lagrange multiplier adjusted as soon

as the constraint was violated.

Weight Norm Constraint Handling

The resulting weight norms of DNN-BSC, DNN-BSC-A, and CoNAC, along with

the Lagrange multipliers of CoNAC, are shown in Fig. 4.13 and Fig. 4.14. All three

controllers—DNN-BSC, DNN-BSC-A, and CoNAC—maintained weight norms within

the imposed weight norm constraints.
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Figure 4.12: Control input paths of DNN-BSC and CoNAC during the time interval
from 5 s to 8 s.

IN DNN-BSC, as shown in Fig. 4.13a, the weight norm of the last layer (i.e. ∥θ̂2∥)
fluctuated significantly over time, proportional to the control input norm. This is be-

cause the last layer’s weights directly determine the control input. When the control

input violated the input norm constraint, the last layer’s weight norm hit the boundary

and stayed there due to the projection operator. However, the projection operator only

responded to violations without considering optimality or behavior.

In DNN-BSC-A, none of the weight norms reached their boundaries, as shown in

Fig. 4.13b. This was due to the auxiliary system, where the auxiliary state ζ reduced

the control input, ensuring it stayed within the input constraint.

In CoNAC, all weight norms complied with the imposed constraints through the

constrained optimization approach, as illustrated in Fig.4.14b. When any weight norm

approached its upper limit, the Lagrange multiplier was promptly activated to steer

the weight adaptation direction towards a constraint-satisfactory point (see Fig.4.14a).

Notably, the weight norms of the first and second layers (∥θ̂0∥ and ∥θ̂1∥) remained

nearly constant throughout the control period. The weight norm of the last layer ∥θ̂2∥
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Figure 4.13: Weight norms of DNN-BSC and DNN-BSC-A.

stabilized within the upper bound by around 6.5 seconds (see Fig. 4.14b (B)), coinciding

with the activation of the input norm constraint. This quasi-static behavior of the

weight norm (i.e. dθ̂/dt = −α∂L/∂θ̂ ≈ 0) along with the quasi-static behavior of

the Lagrange multipliers (i.e. λ̇j = βjcj ≈ 0) implies that the weights were updated

near the KKT conditions, signifying local optimality in CoNAC. However, at around

2.5 seconds (see Fig. 4.14b (A)), the weight norm of the last layer reached the upper

limit earlier, despite similar control conditions as the case at 6.5 seconds. This earlier

saturation likely occurred because the optimization process had not yet fully converged

to the optimal weight values.
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Figure 4.14: Lagrange multipliers and weight norms CoNAC.

The overall weight norms of CoNAC were larger than those of DNN-BSC and

DNN-BSC-A, since CoNAC approximated the entire stabilizing control law, whereas

DNN-BSC and DNN-BSC-A only approximated the system uncertainty term within

the BSC framework.

Comparison Analysis of Computation Times

In addition, the computation times were analyzed and summarized in Table 4.3. The

MATLAB’s functions tic and toc were used to measure the computation time at each

time step and the average values were calculated. The simulations were conducted on a
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Table 4.3: Average computation times.

Computation time BSC DNN-BSC DNN-BSC-A CoNAC

Control (10−5 s) 0.087 0.755 0.7477 0.7465

Ratio 0.112 1 0.988 0.987

Train (×10−5 s) - 3.877 3.821 3.826

Ratio - 1 0.986 0.987

MacBook Air (2021 model) with an M1 processor and 8 GB of RAM. The computation

times of DNN-BSC were used as the reference for the comparison.

The computing times of the control decisions and training processes of all controllers

were below the simulation sampling time Ts = 10−4 indicating their suitability for real-

time applications, as shown in Table 4.3. Notably, controllers utilizing DNNs exhibited

higher computation times than BSC due to the additional processing required for

the DNNs. However, compared to the DNN-BSC and DNN-BSC-A, the CoNAC had

similar computation times for both the control and training processes. In other words,

even though the CoNAC involves the additional process for the constraints and the

Lagrange multipliers, its computation times were not significantly increased compared

to the DNN-BSC and DNN-BSC-A. Therefore, the CoNAC can achieve the better

tracking performance and the constraint handling capability which were discussed in

aforementioned sections, without notable increase in the computation times compared

to existing methods with DNNs.

4.8 Conclusion

In this chapter, a constrained optimization-based neuro-adaptive controller (CoN

AC) for the uncertain Euler-Lagrange system is extended to address both weight norm

and input constraints using deep neural network (DNN). The adaptation law is derived

through a rigorous optimization framework. The stability of the proposed controller was

analyzed using Lyapunov theory, ensuring that the system maintains bounded tracking

and estimation errors under real-time adaptation.

The controller effectively incorporated both the input (bound or norm) constraint

and the weight norm constraint, ensuring that both actuator limitations and neural

network weights were kept within predefined bounds. By formulating these constraints

as part of the optimization process, CoNAC ensured that the weights converged in a
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way that satisfied the Karush-Kuhn-Tucker (KKT) conditions, guaranteeing optimality

and stability.

Simulation results validated the superior performance of CoNAC compared to con-

ventional methods, such as DNN-BSC and DNN-BSC-A. CoNAC not only handled

complex input constraints but also managed the weight norm constraints rigorously,

leading to improved tracking accuracy and stability without notable oscillations.
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Chapter 5

Conclusion and Future Work

In this thesis, the constrained optimization-based neuro-adaptive controller (CoNAC)

for uncertain Euler-Lagrange systems is presented. The two simulation validations

showed that the CoNAC can satisfy the imposed constraints regarding boundedness

of neural network’s (NN’s) weights and control input saturation, while achieving the

desired tracking performance.

However, neuro-adaptive control (NAC) methods including CoNAC have several

limitations to be referred as deep learning-based controller. First, NAC methods adapts

their weights to reduce objective function using current tracking error. This means on-

line implementation is required to train the NNs since the tracking error is dependent on

the current NNs’ weights. Moreover, for the same reason, the NNs cannot be trained of-

fline. Second, the gradient vanishing problem still exists in the train process of the NNs.

To overcome this issue, simply ReLU activation function can be used. However, the

stability should be examined more rigorously than tanh(·), since ReLU is unbounded

and not continuously differentiable.

The following future works are suggested to tackle above limitations. For the first

limitation, first, reinforcement learning (RL) approach can be used, since training NNs

to minimize objective function is similar as RL which trains to maximize the expected

reward typically defined as sign changed tracking error. There are some literature based

on optimal control theory [54–56]. They approximate optimal control law which is ide-

ally obtained using Hamilton-Jacobi-Bellman framework or concept of value function.

Second, since the ideal desired control law is unavailable, the NAC problem can be

reformulated as a system identification problem by re-design NAC to approximate sys-

tem dynamics instead of control law. In contrast to the control law approximation, the

NNs can be trained offline using the system identification data, if the accurate system

dynamics or observation is available.

For the second limitation, other novel constrained optimization methods can be used

to solve gradient vanishing issue. Except gradient descent-like methods, the existing

methods to overcome gradient vanishing issue using constrained optimization approach
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such as the augmented Lagrangian method (ALM) [34] and the alternating direction

method of multipliers (ADMM) [35, 36] are introduced. These methods transform the

NN’s architecture of the NNs to equality constraints and optimize each layer’s weights

and output of activation functions. In other words, the output of NNs can be considered

as one of the optimization variables in optimization problem. Hence, it may simplify

the stability analysis of CoNAC with complex constraints since the nonlinearity of NNs

can be omitted in the adaptation derivation.

On the other hand, if the offline adaptation is available, stochastic approach can

be used to theoretically utilize novel deep learning methods. Since the recent deep

learning methods are based on stochastic methods (e.g. , stochastic gradient descent

(SGD), drop out, L2-regularization), stochastic stability analysis should be conducted if

such methods are used in system. The stability analysis of system which uses stochas-

tic methods is introduced in [57, 58]. By conducting stability analysis for stochastic

systems with NNs and stochastic methods, the stability of the controllers with novel

NN methods (e.g. convolutional NN, transformer) can be theoretically and rigorously

analyzed.
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Summary

Constrained Optimization-Based Neuro-Adaptive Control (CoNAC) for

Euler-Lagrange Systems

In this thesis, a constrained optimization-based neuro-adaptive controller (CoNAC)

for uncertain Euler-Lagrange systems is presented. The deep neural network (NN) in

the CoNAC is used to approximate the uncertainties of the system. Therefore, any

prior knowledge of the system uncertainties is not required. To derive the adaptation

laws of NN’s weights and Lagrange multipliers, the control problem is formulated as a

constrained optimization problem. Satisfactions of the weights’ boundedness and con-

trol input saturation are transformed into constraints in the constrained optimization

problem. Using the corresponding Lagrangian function, the adaptation laws are de-

rived, and they satisfy the first-order optimality conditions at the steady state. The

stability of the CoNAC is analyzed using the Lyapunov stability theorem with bound-

edness of weights and tracking errors guaranteed. Two simulation demonstrated that

the CoNAC can achieve the sufficient tracking performance while satisfying the con-

straints on the weights and control input saturation.
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