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Abstract

For the practical deployment of autonomous driving systems, high levels of safety

and adaptability are essential. Accordingly, Deep Reinforcement Learning (DRL), which

learns and improves driving strategies through trial and error, has gained attention.

However, the reward-driven nature of reinforcement learning may still lead to unsafe

or abnormal behavior even after training. To address this limitation, Constrained Re-

inforcement Learning (CRL) has been proposed to balance safety and performance.

While CRL typically defines constraints as expected cumulative costs, this formulation

does not consider whether constraints are satisfied at each state, making it difficult to

ensure state-wise safety. In this paper, we extend a Lagrangian-based CRL approach by

estimating state-wise Lagrangian multipliers, allowing the policy to account for state-

level safety. We evaluate the proposed method in OpenAI’s Safety Gym environment

and compare its performance with existing Lagrangian-based methods.
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국 문 요 약

자율주행 시스템의 실제 적용을 위해서는 높은 안정성과 적응성이 요구된다. 이에

따라, 시행착오를 통해 주행 전략을 학습하며 발전시키는 심층 강화 학습(Deep Rein-

forcement Learning, DRL)이 주목받고 있다. 하지만 강화 학습은 본질적으로 보상을

극대화하는 방향으로 정책을 학습하기 때문에, 학습 후에도 안전하지 않거나 비정상적

인 행동을 할 가능성을 완전히 배제하기 어렵다. 이러한 한계를 해결하기 위해, 정책

학습 시 안정성과 성능 간의 균형을 도모하는 제약 강화 학습(Constrained Reinforce-

ment Learning, CRL)이 제안되었다. 제약 강화 학습은 기댓값 기반 누적 비용 형태의

제약 조건을 만족하도록 정책을 학습하지만, 각 상태에서의 제약 조건 충족 여부를 고려

하지않아상태별안정성을보장하기어렵다.본논문에서는제약강화학습의한방식인

라그랑지안기반의방법을확장하여,상태별라그랑주승수를추정함으로써정책이상태

별 안정성을 고려하도록 한다. 또한 제안한 방법을 OpenAI의 시뮬레이션 환경인 Safety

Gym을 통해 기존 라그랑지안 기반의 방법들과 비교하여 검증하였다.
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Chapter 1

Introduction

1.1 Introduction

Reinforcement Learning (RL) [1] is a method for learning an optimal policy through

trial and error. Although its theoretical foundations have been established for several

decades, its practical applications were limited by various challenges. One of the biggest

challenges in reinforcement learning is extending it to continuous spaces, which leads

to an increase in the dimensionality of state and action spaces. Due to the exponen-

tial growth in the number of possible states and actions, the corresponding rise in

computational complexity poses a significant obstacle to learning in high-dimensional

environments. To address this issue, traditional approaches often relied on handcrafted

feature engineering to simplify the problem space. However, designing effective features

by hand is both time-consuming and domain-specific, limiting the generalizability of

learned policies across different scenarios. The emergence of deep learning addressed

this issue by enabling automatic feature extraction from raw, high-dimensional in-

puts such as images, sensor data. This advancement eliminated the need for manual

feature design and allowed reinforcement learning agents to operate directly on raw

observations. However, applying deep learning to reinforcement learning introduced

another significant challenge: the data collected by agents is highly correlated. Unlike
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supervised learning, where training data is typically assumed to be independent and

identically distributed (IID), RL agents interact sequentially with the environment,

resulting in temporally correlated data. This violates the IID assumption and can lead

to instability and inefficient learning when training neural networks. A major break-

through in overcoming these limitations came with the introduction of Deep Q-Network

(DQN) [2,3] by DeepMind. By combining deep neural networks with Q-learning, DQN

enabled agents to approximate complex value functions from high-dimensional inputs

such as raw pixel images. This advancement allowed RL agent could achieve human-

level performance in a variety of Atari games without relying on handcrafted features.

This success of DQN has led to significant advances in the field of deep reinforcement

learning (DRL), such as AlphaGo [4] and AlphaZero [5] by DeepMind, which demon-

strated superhuman performance in board games like Go, Chess, and Shogi. In addition,

OpenAI Five [6] showcased the power of DRL in complex, multi-agent environments

by defeating professional human players in the real-time strategy game Dota 2. An-

other notable example is Dactyl [7], a robotic hand developed by OpenAI that learned

to manipulate physical objects using reinforcement learning trained in simulation and

successfully transferred to the real world, highlighting progress in sim-to-real trans-

fer for robotic control. Despite these impressive achievements, applying reinforcement

learning to real-world environments remains challenging. RL agents typically require a

large number of iterations to learn effective policies, often relying on extensive explo-

ration to discover rewarding behaviors. However, during this exploration process, agents

may take unsafe or risky actions that can lead to catastrophic failures—particularly
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in safety-critical domains such as robotics, autonomous driving, or healthcare. More-

over, even after training is complete, there is no guarantee that the learned policy will

consistently behave safely, especially in unseen or out-of-distribution (OOD) environ-

ments. In particular, transferring policies from simulation to the real world (i.e., the

sim-to-real problem) can cause even greater safety concerns when learned behaviors

don’t generalize well to the real world. A key underlying difficulty is the inherent chal-

lenge of designing reward functions that reliably induce safe and desirable behaviors

across a wide range of situations.

1.2 Research Objective

In this thesis, we investigate how to learn safe policies in reinforcement learning

through constrained optimization techniques, focusing on State-wise Constrained Re-

inforcement Learning (SCRL) [8], which introduces cost functions to enforce state-

wise safety constraints during the learning process. Among various SCRL approaches,

we examine Lagrangian-based methods due to their theoretical simplicity and empiri-

cal popularity. This thesis analyzes the limitations of existing Lagrangian methods in

the SCRL setting and empirically examines how specific design choices, including the

bias initialization and the learning rate of the Lagrange multiplier network, influence

both performance and safety. We also propose a method, PPO Lagrangian Network,

which extends Proximal Policy Optimization to the state-wise constraint setting using

a Lagrange multiplier network. The proposed method is empirically evaluated against

existing approaches on a range of tasks from the OpenAI Safety Gym.
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1.3 Outline of the Thesis

This thesis is organized as follows:

• Chapter 2 provides background on reinforcement learning, including policy gra-

dient methods, constrained reinforcement learning and state-wise constrained re-

inforcement learning. It also reviews prior work relevant to this thesis.

• Chapter 3 introduces the proposed method, PPO Lagrangian Network, which

incorporates a state-wise Lagrange multiplier network into the PPO framework.

The design and training procedure are detailed, along with comparisons to related

methods.

• Chapter 4 presents experimental results. We first investigate the influence of key

hyperparameters, such as the entropy coefficient α, bias initialization, and learn-

ing rate of the Lagrange multiplier network. We then evaluate the performance

of PPO Lagrangian network across Safety Gym tasks.

• Chapter 5 concludes the thesis with a summary of findings and discusses limita-

tions and directions for future research.
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Chapter 2

Background

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a framework in which an agent interacts with an

environment and learns a policy to maximize cumulative rewards. The agent observes

the state of the environment, takes actions, and receives rewards based on those actions.

This process is formalized as a Markov Decision Process (MDP) [9], which provides

a formal strcuture for modeling decision-making problems. An MDP is defined by a

tuple (S,A, P,R, γ), where S is the set of states, A is the set of actions, P is the state

transition probability function, R is the reward function, and γ ∈ [0, 1) is the discount

factor. In this thesis, we consider a finite-horizon setting and use the undiscounted

return. The objective of RL is to find an optimal policy π∗ that maximizes the expected

cumulative reward, defined as:

θ∗ = argmax
θ

J(θ)

J(θ) = Eτ∼πθ

[
T∑
t=0

rt

] (2.1)

The policy πθ is assumed to be a differentiable function parmeterized by θ, denoted as

πθ(a|s), which represents the probability of taking ation a given state s. The expecta-

tion Eτ∼πθ
is taken over the trajectories τ = (s0, a0, r0, s1, a1, r1, . . . , sT ) generated by
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following the policy πθ.

2.1.1 Policy Gradient Methods

Since the policy is differentiable, its gradient can be expressed using the likelihood

ratio trick:

∇θπθ(s, a) = πθ(s, a)
∇θπθ(s, a)

πθ(s, a)

= πθ(s, a)∇θ log πθ(s, a)

(2.2)

This term∇θ log πθ(s, a) is referred to as the score function. Although we previously de-

fined the objective function J(πθ) as the expected cumulative reward, we now consider

a simplified case to facilitate explanation. A one-step MDP, in which the agent takes an

action from the initial state, receives a reward, and the episode terminates immediately.

Then, the objective function can be written as (d is the initial state distribution):

J(θ) = Eπθ
[r]

=
∑
s∈S

d(s)
∑
a∈A

πθ(s, a)Rs,a

(2.3)

The gradient of the objective function can be computed as follows:

∇θJ(θ) =
∑
s∈S

d(s)
∑
a∈A

∇θπθ(s, a)Rs,a

=
∑
s∈S

d(s)
∑
a∈A

πθ(s, a)∇θ log πθ(s, a)Rs,a

= Eπθ
[∇θ log πθ(s, a)r]

(2.4)
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The policy gradient theorem generalizes this result to multi-step MDP, where the objec-

tive function is defined as the expected cumulative reward over multiple time steps. In

other words, it replaces the instantaneous reward r with the long-term value Qπθ(s, a),

the action value function.

Theorem 2.1.1 (Policy Gradient Theorem).

∇θJ(θ) = Eπθ
[∇θ log πθ(s, a)Q

πθ(s, a)] (2.5)

REINFORCE

In practice, the exact action value function Qπθ(s, a) is typically unknown. Accordingly,

the estimated return Gt can be used as an approximation of the action value function.

In other words, the action value function Qπθ(s, a) can be replaced with the return Gt

from real sample trajectories using the Monte Carlo method.

∇θJ(θ) = Eπθ
[∇θ log πθ(s, a)Gt] (2.6)

This leads to the Monte-Carlo policy gradient method, commonly known as REIN-

FORCE [10]. However, REINFORCE suffers from high variance in the gradient esti-

mates, due to its reliance on a full trajectory.

– 7 –



Actor-Critic

A common approach to reducing the variance is to use a critic approximates the action

value function, Qϕ(s, a) ≈ Qπθ(s, a).

∇θJ(θ) = Eπθ
[∇θ log πθ(s, a)Qϕ(s, a)] (2.7)

This is the basic idea of the Actor-Critic methods. Actor updates the policy parameters

θ and a critic updates the value function parameters ϕ.

Advantage Actor-Critic

To further reduce the variance, we can introduce a baseline function B(s). Importantly,

subtracting a baseline from the action value function does not change the gradient

because its gradient is zero.

Eπθ
[∇θ log πθ(s, a)B(s)] =

∑
s∈S

d(s)
∑
a∈A

πθ(s, a)∇θ log πθ(s, a)B(s)

=
∑
s∈S

d(s)
∑
a∈A

∇θπθ(s, a)B(s)

=
∑
s∈S

d(s)B(s)∇θ

∑
a∈A

πθ(s, a)

= 0

(2.8)
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Therefore, subtracting a baseline function from the action value function not only leaves

the gradient unchanged but also reduces its variance.

Aπθ(s, a) = Qπθ(s, a)− V πθ(s)

∇θJ(θ) = Eπθ
[∇θ log πθ(s, a)A

πθ(s, a)]

(2.9)

However, since the exact advantage function is generally inaccessible, both the action

value function Qπθ(s, a) and the value function V πθ(s) must be approximated. One

common approach is to use the temporal difference (TD) error δπθ , which is an unbiased

estimator of the advantage function. To summarize, the policy gradient has many

equivalent formulations:

∇θJ(θ) = Eπθ
[∇θ log πθ(s, a)vt] REINFORCE

= Eπθ
[∇θ log πθ(s, a)Qϕ(s, a)] Q Actor-Critic

= Eπθ
[∇θ log πθ(s, a)A

πθ(s, a)] Advantage Actor-Critic

= Eπθ
[∇θ log πθ(s, a)δ

πθ ] TD Actor-Critic

(2.10)

Proximal Policy Optimization (PPO)

The methods introduced above are all on-policy: training samples are collected using

the same policy that we want to optimize. However, on-policy methods can be inefficient

in terms of sample usage and may suffer from instability due to large updates. Proximal

Policy Optimization (PPO) [11] addresses these issue by incorporating importance

sampling to reuse data collected from the old policy and introducing a clipped surrogate
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objective function to prevent large policy updates that may cause divergence. Based on

the Advantage Actor-Critic formulation Eq. 2.9, the policy gradient can be interpreted

as optimizing the following objective function:

J(θ) = Eπθ
[log πθ(s, a)A

πθ(s, a)] (2.11)

This formulation assumes that data is collected from the current policy. However, in

order to improve sample efficiency by reusing data from a previous policy πθold , we can

apply importance sampling. So, the objective function can be rewritten as:

JTRPO(θ) = Eπθold

[
πθ(s, a)

πθold(s, a)
Aπθold (s, a)

]
(2.12)

This objective was introduced in Trust Region Policy Optimization (TRPO) [12], the

predecessor of PPO. In this formulation, r(θ) = πθ(s,a)
πθold

(s,a)
represents the probability

ratio between old and new policies. While, this allows us to reuse data from the old

policy, maximizing this objective without any constraint can lead to large updates and

unstable training. To prevent such instability, PPO imposes the constraint by forcing

r(θ) to stay within a small interval [1− ϵ, 1 + ϵ].

JPPO(θ) = Eπθold
[min (r(θ)Aπθold (s, a), clip(r(θ), 1− ϵ, 1 + ϵ)Aπθold (s, a))] (2.13)

The function clip(r(θ), 1− ϵ, 1+ ϵ) clips the probability ratio to the range [1− ϵ, 1+ ϵ].

Therefore, the objective function takes the minimum one between the original value
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and the clipped value. This ensures that the policy update does not deviate too far

from the old policy, thus stabilizing the training process.

2.1.2 Off-Policy Gradient Methods

Off-policy methods allow the agent to learn from data collected by a different policy

called the behavior policy. As a result, the off-policy approach improves sample effi-

ciency by enabling the reuse of past experiences and enhances exploration by allowing

the agent to learn from data collected by a behavior policy. In order to apply off-policy

learning within the policy gradient framework, we can incorporate importance sampling

into the policy gradient Theorem 2.1.1.

∇θJ(θ) = Eτ∼πθ
[∇θ log πθ(s, a)Q

πθ(s, a)]

= Eτ∼β

[
πθ(s, a)

β(s, a)
∇θ log πθ(s, a)Q

πθ(s, a)

] (2.14)

This allows to estimate the gradient using samples generated by a behavior policy β

instead of the current policy πθ.

Soft Actor-Critic (SAC)

Soft Actor-Critic (SAC) [13–15] is an off-policy actor-critic model. In SAC, the policy

is trained with the objective of maximizing the expected return and the entropy of the

policy.

J(θ) = Eτ∼πθ

[
T∑
t=0

(rt + αH(πθ(·|st)))

]
(2.15)

H(πθ(·|st)) = Eat∼πθ
[− log πθ(at|st)] (2.16)
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where H(·) is the entropy measure and α controls how important the entropy term is

relative to the reward. Entropy maximization leads to policies that can explore more

and capture multiple modes of near-optimal strategies. If there exist multiple options

that seem equally good, the policy should assign each of them an equal probability. In

the SAC algorithm, the policy is updated through the soft policy iteration. First, the

policy evaluation step of soft policy iteration computes the soft Q-value:

Qπθ(s, a) = Eτ∼πθ

[
T∑
t=0

(rt + αH(πθ(·|st)))
∣∣∣s0 = s, a0 = a

]
(2.17)

Then, the policy improvement step updates the policy to minimize the KL-divergence:

J(θ) = Est∼D

[
DKL

(
πθ(·|st)

∣∣∣∣∣∣exp(Qθ(st, ·))
zθ(st)

)]
= Est∼D [Eat∼πθ

[α log(πθ(at|st))−Qϕ(st, at)]]

(2.18)

2.2 Constrained Reinforcement Learning

Constrained Reinforcement Learning (CRL) extends the standard RL framework by

incorporating constraints into the learning process. CRL is formalized as a Constrained

Markov Decision Process (CMDP) [16], which is defined by a tuple ⟨S,A,P ,R, C, γ⟩.

Here, C is the cost functions associated with the constraints. The feasible policy set in

a CMDP is given by:

ΠC = {π : Jci(π) ≤ di, i = 1, · · · , k} (2.19)
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where Jci(π) is a cost-based constraint function defined the expected cumulative cost,

and di is the threshold for the i-th constraint. The objective of CRL is to find an

optimal policy that maximizes the expected cumulative reward while satisfying the

constraints. In the context of policy gradient methods, the constrained optimization

problem can be formulated as follows:

θ∗ = argmax
θ

J(θ)

J(θ) = Eτ∼πθ

[
T∑
t=0

rt

]
subject to Eτ∼πθ

[
T∑
t=0

ct

]
≤ d

(2.20)

2.2.1 Lagrangian Method

Constrained optimization problem defined in Eq. 2.20 can be solved using various

methods. In this thesis, however, we consider only the Lagrangian method. By applying

Lagrangian relaxation, the constrained optimization problem can be transformed into

an unconstrained optimization problem, in which the constraint is incorporated into

the objective function using a Lagrange multiplier λ.

θ∗ = argmax
θ
L(θ, λ)

L(θ, λ) = Eτ∼πθ

[
T∑
t=0

rt

]
− λ

(
Eτ∼πθ

[
T∑
t=0

ct

]
− d

) (2.21)

The Lagrange multiplier λ is a non-negative scalar that adjusts the trade-off between

maximizing the expected cumulative reward and satisfying the constraints.
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2.2.2 Related Work: PPO Lagrangian

PPO Lagrangian is an adaptation of PPO to the CRL setting by incorporating

the Lagrangian method [17]. Thus, the objective function of PPO Lagrangian can be

written as:

JPPO-Lag(θ) = Eπθold

[
min

(
r(θ)Aπθold (s, a), clip(r(θ), 1− ϵ, 1 + ϵ)Aπθold (s, a)

)
− λr(θ)A

πθold
c

] (2.22)

where λ is the Lagrange multiplier that adjusts the trade-off between the reward and

the cost. A
πθold
c is the advantage function for the cost. The Lagrange multiplier λ is

updated iteratively during training to ensure the constraint is satisfied. The update of

the Lagrange multiplier depends on whether the empirical cumulative cost exceeds the

threshold d. Specifically, the empirical cumulative cost is computed as:

Ĵc =
1

N

N∑
i=1

T∑
t=0

c
(i)
t (2.23)

where N is the number of sampled episodes, and c
(i)
t denotes the cost received at time

step t in the i-th episode. The Lagrange multiplier λ is updated via gradient ascent:

λ←
[
λ+ β

(
Ĵc − d

)]
+

(2.24)

where β is the leraning rate, and [·]+ denotes clipped to be non-negative. This update

increases λ when the empirical cost exceeds the threshold d, encouraging the policy
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Figure 2.1: Structure of PPO Lagrangian

to reduce the cost in subsequent updates. The overall structure of PPO Lagrangian is

illustrated in Fig. 2.1. The agent interacts with the environment by taking actions gen-

erated from the actor network, thereby collecting trajectories. Using the actual rewards

and costs obtained from the trajectories, the value functions are updated, and both re-

ward and cost advantages are computed. The Lagrange multiplier is updated based on

the cost returns from the trajectories. Finally, the policy is updated using the reward

advantage, cost advantage, and the Lagrange multiplier according to Equation 2.22.

2.3 State-wise Constrained Reinforcement Learning

State-wise Constrained Reinforcement Learning (SCRL) is a variant of CRL that

imposes constraints at the state level. CRL considers the cumulative cost over the entire

trajectory, while SCRL focuses on the cost at each transition. SCRL is formalized as
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a State-wise Constrained Markov Decision Process (SCMPD), it is quite similar to

CMDP, but SCMDP enforces the constraint for every state action trasition satisfies a

hard constraints. The objective of SCRL is to find an optimal policy that maximizes

the expected cumulative reward while satisfying the state-wise constraints.

π∗ = argmax
πθ

J(θ)

J(θ) = Eτ∼πθ

[
T∑
t=0

rt

]
subject to Eτ∼πθ

[c(s, a)] ≤ w, ∀s ∈ S

(2.25)

2.3.1 Related Work: Feasible Actor-Critic

Feasible Actor-Critic (FAC) is an extension of the Soft Actor-Critic algorithm to the

SCRL setting [18]. In FAC, the state-wise constraint is enforced via a cost action-value

function, formulated as:

Qπθ
c (s, a) = Eτ∼πθ

[
T∑
t=0

ct|s0 = s, a0 = a

]
≤ w (2.26)

The objective function of FAC is defined as:

JFAC(θ) = Est∼D

[
Eat∼πθ

[
α log(πθ(at|st))−Qϕ(st, at)

+ λξ(st) (Qϕc(st, at)− w)
]] (2.27)

where Qϕc is the cost action-value function, and λξ is the Lagrange multiplier network,

which estimate the Lagrange multiplier for each state. The update of the Lagrange mul-

tiplier network depends on whether the cost action-value function exceeds the threshold
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w.

Jλ(ξ) = Est∼D [Eat∼πθ
[λξ(st) (Qϕc(st, at)− w)]] (2.28)

Fig. 2.2 illustrates the architecture of Feasible Actor-Critic (FAC). Since FAC is an

off-policy algorithm, samples collected during the rollout phase are stored in a replay

buffer, and mini-batches are drawn from it to update the actor, critics, and Lagrange

multiplier network. The environment-provided reward and cost are used to update

their respective Q-functions. Using the reward and cost values estimated by the critic

networks, together with the Lagrange multiplier computed from the Lagrange multiplier

network, the policy is updated according to Equation 2.27. The Lagrange multiplier

network is updated based on the cost values estimated by the cost Q-function.

Replay
Buffer

observation

action

obs valueact

obs
act

sample

Actor

Critic Cost Critic

observation

Lagrange
m

ultiplier

Lagrange Multiplier Network

: action

Goal

Vases
Agent

Hazard

Simulation

value

Cost value

Figure 2.2: Structure of Feasible Actor-Critic

Although FAC contributes by proposing a framework that leverages a Lagrange multi-

plier network to address state-wise safety in policy learning, it has several limitations.
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• Soft Actor-Critic (SAC) encourges exploration and promotes diverse action se-

lection by adjusting the temperature parameter α. However, this objective can

conflict with the constraint penalty term, which pushes the policy toward satis-

fying constraints. As a result, it becomes more difficult for the policy consistently

satisfy the constraints.

• Instead of using the empirical cost values, FAC relies on a cost value estimated by

the cost action-value function Qϕc(s, a). This introduces instability in the update

of the Lagrange multiplier network due to potentially inaccurate cost estimates,

which in turn can lead to unreliable policy updates.
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Chapter 3

PPO-based Method in State-wise Constrained

RL

3.1 PPO Lagrangian Network

As discussed in Section 2.3.1, Feasible Actor-Critic (FAC) exhibits potential limi-

tations arising from the characteristics of the SAC algorithm, its off-policy nature, and

the way state-wise safety is defined through the cost Q-function. In this chapter, we

introduce our proposed method, which extends PPO under the state-wise constrained

RL framework. Similar to FAC method, we employ a network that estimates state-wise

Lagrange multipliers to enforce safety constraints at the state level. Thus, objective

function of the policy is modified to include a Lagrange multiplier network:

JPPO-Lagnet(θ) = Eπθold

[
min

(
r(θ)Aπθold (s, a), clip(r(θ), 1− ϵ, 1 + ϵ)Aπθold (s, a)

)
− λξ(s)r(θ)A

πθold
c

] (3.1)

where A
πθold
c is the advantage function for the cost and λξ(s) is the Lagrange multiplier

network that estimates the Lagrange multiplier for the cost at state s. The Lagrange

multiplier network is iteratively updated during training to guide the policy toward

satisfying the imposed constraints. The update of the Lagrange multiplier network
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depends on whether the empirical cost at state s exceeds the threshold w:

λ(s)← λ(s) + β(Ĵc − w) (3.2)

To ensure the positivity of the Lagrange multiplier, a softplus activation function is

applied to the final layer of the network.
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Figure 3.1: Structure of PPO Lagrangian Network

The overall architecture of the PPO Lagrangian Network is illustrated in Fig. 3.1.

The structure closely follows that of PPO Lagrangian described in Fig. 2.1: the agent

interacts with the environment using actions generated by the actor network, and the

collected trajectories are used to estimate reward and cost returns at each state using

the value function networks. These return estimates are then used to compute the

reward and cost advantages, which correspond to Aπθold and A
πθold
c . These advantages

are then used to update the policy according to Equation 3.1. The key distinction from
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the PPO Lagrangian lies in the design of the Lagrange multiplier. Instead of using a

single scalar multiplier, the PPO Lagrangian Network introduces a dedicated neural

network that estimates a state-wise Lagrange multiplier λξ(s), which is updated based

on the cost incurred at each individual state within the trajectories. This allows the

algorithm to enforce constraints more precisely at the state level rather than relying

on trajectory-level cost.

3.1.1 Comparison with PPO Lagrangian

In PPO Lagrangian, the Lagrange multiplier is a scalar because it enforces that

the cumulative cost along trajectories generated by the policy πθ remains below a

specified threshold. In contrast, PPO Lagrangian Network estimates a state-wise La-

grange multiplier, which enables the policy to satisfy cost constraints more precisely at

each individual state by enforcing the cost at each state to remain below the specified

threshold.

3.1.2 Comparison with Feasible Actor-Critic

Feasible Actor-Critic (FAC) is similar to PPO Lagrangian Network in that it also

estimates a state-wise Lagrange multiplier. However, unlike FAC, our method updates

the Lagrange multiplier network in a different way. In FAC, the update is based on

the output of the cost action-value network, which estimates the state-wise cost value.

In contrast, our proposed method updates the policy based on the actual cost values

observed for each state.
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Algorithm 1: PPO Lagrangian Network

Input: Initial policy parameters θ0, initial value function parameters ϕ0,
initial cost value function parameters ϕc

0, Lagrange multiplier network
parameters ξ, threshold w

1 for each epoch k = 0, 1, 2, · · · do
2 for each time step t = 1 to T do

// Collect trajectories

3 Sample action at ∼ πθt−1(st)
4 Execute action at in the environment and observe reward rt, cost ct and

next state st+1

5 Store transition τt = (st, at, rt, ct, st+1) in buffer Dk

6 if episode end then

7 Compute rewards-to-go R̂t and advantage estimates Ât based on the
current value function Vϕk

8 Compute costs-to-go R̂c
t and cost advantage estimates Âc

t based on
the current cost value function V c

ϕk

// Lagrange multiplier network update

9 Update the Lagrange multiplier λ by gradient ascent:

ξk+1 = ξk + β

[
1

|Dk|T
∑
τ∈Dk

T∑
t=0

(ct − w)

]

// Policy update

10 Update the policy parameters θ by maximizing the objective function:

θk+1 = argmax
1

|Dk|T
∑
τ∈Dk

T∑
t=0

[
min

(
rt(θ)Â

πθk (st, at), g
(
ϵ, Âπθk (st, at)

))
− λξ(st)rt(θ)Â

πθk
c (st, at)

]
where rt(θ) =

πθ(at|st)
πθk(at|st)

, g(ϵ, A) =

{
(1 + ϵ)A A ≥ 0

(1− ϵ)A A < 0

// Value function update

11 Fit value function by regression on mean-squared error:

ϕk+1 = argmin
ϕ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(
Vϕ(st)− R̂t

)2
ϕc
k+1 = argmin

ϕ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(
Vϕc(st)− R̂c

t

)2
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Chapter 4

Experiments

4.1 Setup

For our experiments, we use the OpenAI Safety Gym [17,19] environments. OpenAI

no longer maintains Safety Gym, and its development has been continued since 2023 by

the PKU-Alignment Team under the name Safety Gymnasium. Safety Gymnasium pre-

serves full compatibility with the original Safety Gym environments, including identical

reward functions, cost functions, agents, and other components. To avoid confusion,

we refer to Safety Gymnasium environments as Safety Gym throughout this thesis. In

Safety Gym environements, there are three types of agents: Point, Car, and Doggo. In

our experiments, we only use the Car agent.

• Car: A car-like robot with two independently controlled front wheels and a pas-

sive rear wheel. Since both forward movement and turning must be controlled

together, it is slightly more difficult to operate than the Point. The Car agent is

shown in Fig. 4.1 and Fig. 4.2.

Also, there are three types of tasks: Goal, Button, and Push. We use two of the tasks

provided in Safety Gym: Goal and Button.

• Goal: The agent must reach a goal location while avoiding obstacles.

• Button: The agent must press a button while avoiding obstacles.
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The reward function provides positive rewards as the agent moves closer to the goal,

and negative rewards as it moves farther away: rt = dt−1 − dt, where dt is the distance

to the goal at time t. Additionally, each task provides an extra positive reward when

the agent successfully completes the objective, such as reaching the goal, pressing a

button.

Goal

Agent

reward = 0.5

Figure 4.1: Illustration of how reward is computed in the Safety Gym

Agent

Hazard

cost = 0.1

Agent

Gremlin

cost = 1.0

Contact occured

Agent

Button

cost = 1.0

Press the wrong buttonEnter the area

Figure 4.2: Illustration of how costs are computed in the Safety Gym

The cost function varies depending on the types of obstacles present in each task. In our

experimental environments, three types of obstacles are used, as illustrated in Fig. 4.2:
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• Hazard: A cost is assigned when the agent enters a hazard area. The cost is

computed as ct = dt − rhazard, where dt is the distance from the agent to the

center of the hazard and rhazard = 0.2 is the hazard radius.

• Gremlin: A cost of −1.0 is incurred when the agent makes contact with the

gremlin object.

• Button: A cost of −1.0 is assigned when the agent presses a button that is not

the designated goal button.

A key distinction of this thesis compared to other works lies in how the cost function is

defined. Safety Gym provides two options for computing cost: a dense formulation and a

sparse (indicator) cost. Many prior works adopt the sparse cost, where the environment

returns 1 if a cost-triggering event occurs and 0 otherwise. In contrast, this thesis uses

the dense cost described above, where the cost value is computed at each time step

based on factors such as distance to obstacles or safety-related conditions. This choice

is motivated by the fact that using sparse costs makes it difficult to precisely define

and enforce constraint conditions. Dense costs allow for more precise and informative

constraint definitions compared to sparse costs.

4.2 Analyzing the Influence of alpha in the Feasible Actor-Critic

As discussed in Section 2.1.2, Soft Actor-Critic (SAC) promotes stochastic explo-

ration by maximizing both expected return and policy entropy. The temperature pa-

rameter α controls the importance of the entropy term: larger values of α encourage

more exploratory and diverse action selection. However, in the Feasible Actor-Critic
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(FAC), this exploration objective can conflict with the effect of the Lagrange multiplier,

which encourages the policy to satisfy safety constraints. To examine this trade-off, we

compare the training performance of unconstrained SAC (yellow curve) and FAC with

various fixed α values, using Fig. 4.3, Fig. 4.4. In Figure 4.4, although small spikes are

present, FAC with all tested α values generally maintains a lower cost compared to

unconstrained SAC. This indicates that the constraint-satisfying mechanism in FAC is

working as designed, leading to lower cost return by enforcing state-wise constraints

more effectively. On the other hand, the return curves in Figure 4.3 reveal that with

α = 0.001 (green), the return improves rapidly in the early phase (up to around 200

epochs), but then gradually declines and converges toward zero. This behavior sug-

gests that when α is relatively large, the entropy term dominates the learning signal,

making the policy overly stochastic and less sensitive to both reward and constraint

signals—ultimately degrading policy performance. Based on these observations, we fix

α to a small value of 0.00001 for all subsequent comparisons between FAC and our

proposed method, to minimize the entropy-induced instability while retaining some

degree of exploration.
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Figure 4.3: Training curves of return over epochs for different temperature parameters
α in the Feasible Actor-Critic algorithm

Figure 4.4: Training curves of cost return over epochs for different temperature param-
eters α in the Feasible Actor-Critic algorithm
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Table 4.1: Hyperparameters used in Experiment 4.2

Hyperparameter Value

Environment Car Goal
Number of epochs 1000
Number of steps per epoch 2000
Batch size 256
Hidden layer size (MLP) 256
gamma (discount factor) 0.99
polyak (target network update) 0.995
Learning rate (policy) 5e-6
Learning rate (value function) 1e-3
Learning rate (Lagrange multiplier) 5e-8
Lagrange multiplier init (bias) 0

4.3 Analyzing the Influence of Bias Initialization in the Lagrange Multi-

plier Network of PPO Lagrangian Network

Lagrangian-based methods are known to be sensitive to both initialization and

learning rate [20]. Improper initialization of the Lagrange multiplier network can lead

to suboptimal or delayed policy convergence. In particular, a large initial value may

overly penalize the policy, driving it prematurely toward a local optimum, while a small

initial value may result in slow adaptation of the constraint enforcement. To analyze

the effect of bias initialization, we conducted experiments by varying the initial bias

value of the final layer in the Lagrange multiplier network. Specifically, we manually

initialized the bias term of the last linear layer to one of four values: 0, 20, 40, and 60.

In Fig. 4.5, shows the training curves of return over 1000 epochs for different bias initial-

izations of the Lagrange multiplier network. Although the convergence behavior varies

across initial values, all four settings demonstrate stable policy learning overall. When
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Figure 4.5: Training curves of return over epochs for different bias initializations in the
Lagrange multiplier network

the initial bias is set to 0, the early phase (epoch 0 ∼ 300) closely resembles uncon-

strained PPO, showing a rapid increase in return. However, as the Lagrange multiplier

values grow, the return gradually decreases, indicating stronger constraint enforcement

over time. With an initial bias of 20, the agent achieves the most stable and effective

learning performance, maintaining high return while satisfying constraints. In contrast,

higher initializations (40 and 60) result in excessive penalty signals, which overly con-

strain the policy. This leads to premature convergence to suboptimal solutions, likely

due to limited exploration or overly conservative policy updates.

As shown in Fig. 4.6, all four settings demonstrate a stable reduction in cost over

the course of training. This indicates that the Lagrange multiplier network, regard-

less of initialization, is able to learn to enforce constraints effectively. However, when

comparing the results more closely, we observe that the setting with an initial bias

of 0 achieves less cost reduction compared to the setting with an initial bias of 20,
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Figure 4.6: Training curves of cost return over epochs for different bias initializations
in the Lagrange multiplier network

despite both eventually reaching similar Lagrange multiplier values (see Fig. 4.7). This

suggests that early enforcement of constraints plays an important role in guiding the

policy to safer regions of the state space. In the zero-initialization case, the Lagrange

multiplier grows more slowly, allowing higher constraint violations in the early phase

of training. As a result, the policy may have already been shaped in a way that is

less sensitive to cost signals, making later enforcement of constraints less effective and

leading to suboptimal cost minimization. Therefore, initializing the Lagrange multiplier

with a moderately large value (e.g., 20) helps stabilize training by better balancing the

trade-off between reward and cost throughout learning.
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Figure 4.7: Training curves of Lagragne multiplier over epochs for different bias initial-
izations in the Lagrange multiplier network

4.4 Analyzing the Influence of Learning Rate in the Lagrange Multiplier

Network of PPO Lagrangian Network

The learning rate of the Lagrange multiplier network also plays a crucial role in

stability and convergence. If the learning rate is too high, the multiplier may oscillate

excessively, causing unstable policy updates. Conversely, if it’s too low, the multiplier

may adapt too slowly to apply appropriate penalties. To analyze the effect of the learn-

ing rate in the Lagrange multiplier network, we conducted experiments by varying the

learning rate used for optimizing the network parameters. Specifically, we tested three

different learning rate values: 0.0003, 0.003, and 0.03. Fig 4.8 - 4.10 show the impact of

learning rate on return, cost, and the Lagrange multiplier. Except for the case with a

learning rate of 0.0003, all other settings converge to near-zero returns during training.

In the case of a 0.003 learning rate, the return begins to decrease slightly after around
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epoch 400. During this period, the Lagrange multiplier continued its steady growth,

increasing from around 200 at epoch 400 to approximately 500 by epoch 1000, as shown

in Fig. 4.10. This suggests that stronger constraint enforcement over time leads to a

drop in reward. With a learning rate of 0.03, the Lagrange multiplier grows rapidly and

exhibits high variance, making the overall training highly unstable. These findings sug-

gest that the learning rate of the Lagrange multiplier network must be carefully tuned

to ensure stable training while appropriately enforcing the constraints. Therefore, in

the subsequent experiments, we initialize the bias of the Lagrange multiplier network

to 20 and set the learning rate to 0.0003.

Figure 4.8: Training curves of return over epochs for different learning rate initializa-
tions in the Lagrange multiplier network
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Figure 4.9: Training curves of cost return over epochs for different learning rate initial-
izations in the Lagrange multiplier network

Figure 4.10: Training curves of Lagrange multiplier over epochs for different learning
rate initializations in the Lagrange multiplier network
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Table 4.2: Hyperparameters used in Experiments 4.3 and 4.4. In each experiment,
either the Lagrange multiplier initialization bias or the learning rate was varied, as
shown in the corresponding plots. The other hyperparameter was fixed to the value
listed in this table.

Hyperparameter Value

Environment Point Goal
Number of epochs 1000
Number of steps per epoch 30000
Hidden layer size (MLP) 64
gamma (discount factor) 0.99
lambda (GAE) 0.97
Learning rate (policy) 3e-4
Learning rate (value function) 1e-3
Learning rate (Lagrange multiplier) 3e-4
Lagrange multiplier init (bias) 0

4.5 Evaluation Results

In this section, we present the a comparative evaluation of PPO Lagrangian, Fea-

sible Actor-Critic, and our proposed method across two tasks: Car Goal, and Car

Button.

4.5.1 Car Goal

In the Car Goal task, we compare the performance of Feasible Actor-Critic (FAC),

PPO Lagrangian, and our proposed PPO Lagrangian Network. As shown in Fig. 4.11,

all three methods converge to similar return values, indicating comparable task per-

formance in terms of reward. In terms of cost return (Fig. 4.12), both PPO-based

methods show stable and consistent reductions in cost over time. In contrast, the FAC

method produces highly fluctuating cost values throughout training. In addition, as
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shown in Fig. 4.11, the FAC method exhibits higher variance in return compared to

the PPO-based methods. This instability may be caused by a conflict between SAC’s

entropy regularization and the penalty term introduced by the Lagrange multiplier.

While entropy regularization encourages exploration, the penalty term enforces con-

straint satisfaction, which can lead to conflicting optimization objectives. These factors

make the FAC method more sensitive to hyperparameter choices and appear to result

in lower stability compared to the on-policy PPO-based approaches. Finally, as shown

in Fig. 4.13, we can observe that the Lagrange multiplier network in the FAC method

was initialized with zero bias, as large initial values were found to cause unstable learn-

ing dynamics in preliminary experiments. Additionally, we note that this experimental

result differs from the one reported in the FAC paper. As mentioned in Section 4.1, we

use a dense cost formulation, where the actual cost values vary depending on the state.

In contrast, the FAC implementation uses a sparse cost formulation, where the agent

receives a cost of 1 if a constraint is violated and 0 otherwise. This leads to differences

in the learned Q-function and cost Q-function values, potentially resulting in different

optimization process and constraint enforcement behavior.
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Figure 4.11: Training curves of return over epochs for PPO Lagrangian, Feasible Actor-
Critic, and PPO Lagrangian Network on the Car Goal task

Figure 4.12: Training curves of cost return over epochs for PPO Lagrangian, Feasible
Actor-Critic, and PPO Lagrangian Network on the Car Goal task
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Figure 4.13: Training curves of Lagrange multiplier over epochs for PPO Lagrangian,
Feasible Actor-Critic, and PPO Lagrangian Network on the Car Goal task

4.5.2 Car Button

Unlike the Car Goal task discussed in Section 4.5.1, this task contains more ob-

stacles, which makes policy learning difficult when the cost limit is set to zero (i.e.,

when any constraint violation is strictly prohibited). Therefore, in this task, we allow

the state-wise cost to be up to 0.3, which corresponds to a maximum cumulative cost

of 300 per episode, given that the episode length is fixed at 1000 steps. Additionally,

since setting the Lagrange multiplier network’s bias to 20 resulted in unstable learning

in this task, we initialized it with zero bias in this experiment. As shown in Fig. 4.14,

our proposed method demonstrates stable convergence in return. In contrast, the PPO

Lagrangian method (green) shows unstable policy behavior between epochs 300 and

600, followed by performance recovery in the later stages. For the FAC method, the

policy does not improve until around epoch 800, and only starts to receive meaningful
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rewards after epoch 900. Looking at Fig. 4.15, we observe that the cost values of FAC

begin to increase around the same time its return starts to improve. These results indi-

cate that FAC needs more training iterations in this task to effectively balance reward

acquisition and constraint satisfaction. Both PPO-based methods (PPO Lagrangian

and our proposed method) appear to satisfy the constraints effectively, and in particu-

lar, our proposed method maintains stable constraint satisfaction starting from around

epoch 100.

Figure 4.14: Training curves of return for PPO Lagrangian, Feasible Actor-Critic, and
PPO Lagrangian Network in Car Button task
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Figure 4.15: Training curves of cost return for PPO Lagrangian, Feasible Actor-Critic,
and PPO Lagrangian Network in Car Button task

Figure 4.16: Training curves of Lagrange multiplier for PPO Lagrangian, Feasible
Actor-Critic, and PPO Lagrangian Network in Car Button task
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4.6 Evaluation Lagrange Multiplier Network

In this section, we evaluate the performance of the Lagrange multiplier network

trained in the Point Goal task. We utilize the trained Lagrange multiplier network at

test time, thereby enabling the assessment of whether the current state is potentially

unsafe. As illustrated in Fig. 4.17 and Fig. 4.18, the trained Lagrange multiplier network

outputs (displayed in the top-right corner of each figure) near-zero or low values when

the agent is in a safe state, meaning there are no nearby obstacles or the agent is not

moving toward hazardous regions. As the agent approaches obstacles, the output of the

network gradually increases, indicating a higher level of potential risk. These results

demonstrate that the Lagrange multiplier network has successfully learned to assign

appropriate penalties based on the agent’s proximity to unsafe areas. Therefore, it can

be effectively used at test time to assess the safety of a given state.
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(a) Step 2170

(b) Step 2450

(c) Step 2670

Figure 4.17: Visualization of the Lagrange multiplier network output at different steps
in the test scenario 1
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(a) Step 4640

(b) Step 4850

Figure 4.18: Visualization of the Lagrange multiplier network output at different steps
in the test scenario 2
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Chapter 5

Conclusion

5.1 Conclusion

In this thesis, we proposed an extension to Proximal Policy Optimization (PPO) by

incorporating a Lagrange multiplier network, enabling the policy to account for state-

wise constraints during training. This method incorporates a network that estimates

state-wise Lagrange multipliers to enforce safety constraints at the state level, allowing

for more flexible and precise control over the policy’s behavior in constrained environ-

ments. We conducted an empirical analysis of the impact of the bias initialization and

learning rate on the performance of the Lagrange multiplier network. Our experiments

show that setting the bias in the range of 0 to 20 and using a learning rate similar to

that of the policy network yields the most stable and effective learning outcomes. Fur-

thermore, when compared to existing methods such as PPO Lagrangian and Feasible

Actor-Critic, our proposed approach exhibited more consistent and reliable constraint

satisfaction across different tasks. These results suggest that our method provides a

robust framework for safe reinforcement learning under state-wise constraints. We also

found that the trained Lagrange multiplier network can be deployed at test time to

assess whether the current state is potentially unsafe. If the network outputs a high

value for a given state, it typically indicates that the agent is near a constraint-violating
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region (e.g., close to an obstacle). In such cases, we observed that the agent adjusts its

behavior to avoid hazards and navigates more safely.

5.2 Limitations and Future Work

While our proposed method demonstrates promising results in enforcing state-wise

constraints, several limitations remain. First, since the policy is trained to satisfy con-

straints by incorporating penalty terms, it does not offer deterministic safety guaran-

tees. Even after training, constraint violations may still occur. To overcome this issue,

the trained Lagrange multiplier network can be leveraged at test time to identify high-

risk situations. If an action is considered unsafe, a safety filter may be used to override

it, thereby improving safety at deployment. Moreover, while our method does not guar-

antee stability during training, this limitation may be addressed by integrating tech-

niques that ensure safe exploration. For example, projection-based approaches [21,22],

which optimize the policy while keeping it within the feasible region, could be consid-

ered. Second, our current evaluation is restricted to the relatively simple Safety Gym

environments implemented using the MuJoCo engine. To further validate the practi-

cality and generalizability of our approach, we plan to extend our experiments to more

realistic and safety-critical domains, such as CARLA [23], a high-fidelity autonomous

driving simulator. This transition would enable us to evaluate the robustness, scalabil-

ity, and real-world applicability of the proposed method in more complex and dynamic

scenarios.
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Summary

State-wise Safety in Autonomous Driving

via Lagrangian-based

Constrained Reinforcement Learning

This thesis studies how to train policies to satisfy state-wise safety using state-

wise constrained reinforcement learning. We focus on Lagrangian-based approaches

and identify their key limitations, particularly with respect to learning stability and

convergence. To address these challenges, we propose PPO Lagrangian Network, an

extension of Proximal Policy Optimization that incorporates a Lagrange multiplier

network to dynamically enforce safety constraints at the state level. Experiments on the

OpenAI Safety Gym benchmark show that proposed method achieves more stable and

reliable constraint satisfaction than existing approaches such as PPO Lagrangian and

Feasible Actor-Critic (FAC). We further investigate how hyperparameter choices, such

as the initialization bias and learning rate of the Lagrange multiplier network, affect

performance. Our findings indicate that careful tuning of these parameters is crucial for

maintaining stability under hard constraint settings. Additionally, we demonstrate that

the trained Lagrange multiplier network can be reused at test time as a risk estimator,

enabling the assessment of a given state’s safety.
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