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Abstract—This paper proposes an online actor critic learning-
based optimal tracking control method for output-feedback servo
positioning systems under unknown external disturbances. The
servo system is reformulated into a control-affine form, where
the uncertain dynamics are compactly represented as a lumped
unknown function. An online identifying filter is introduced to
estimate these dynamics, while an actor-critic neural network
structure is used to approximate the value function and optimal
control input. The proposed method yields an approximate
solution to the Hamilton–Jacobi–Bellman equation, with adaptive
update laws ensuring asymptotic convergence of the Bellman
residual error. Lyapunov-based analysis guarantees the stability
of the closed-loop system. Simulation results confirm the effec-
tiveness of the proposed method in achieving robust tracking
under time-varying disturbances.

Index Terms—Learning based control, Intelligent control, Re-
inforcement learning, Optimal control, Motor control

I. INTRODUCTION

Servo positioning systems are critical in a wide range of
industrial applications requiring high-precision motion con-
trol, including robotics, semiconductor manufacturing, and
automatic assembly lines. These systems often encounter
unmodeled dynamics, time-varying disturbances, and param-
eter uncertainties, which significantly challenge robust and
accurate trajectory tracking. Therefore, the development of
intelligent and adaptive control strategies capable of ensuring
high-performance tracking under uncertain conditions remains
an important research focus [1], [2].

Various nonlinear control methods have been proposed to
address these challenges, including feedback linearization,
backstepping, sliding mode control, and disturbance observer
(DOB)-based techniques [3], [4]. Although effective under
certain assumptions, many of these model-based approaches
depend heavily on accurate knowledge of system dynamics
or disturbance characteristics. Their performance may deteri-
orate in the presence of modeling errors or unknown time-
varying disturbances. In recent years, data-driven control and
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reinforcement learning (RL)-based strategies have emerged as
promising alternatives, offering the potential to learn control
policies directly from system interactions without explicit
modeling [5], [6].

This paper presents an online actor critic learning-based
optimal tracking control method for output feedback servo
positioning systems. The control design is formulated using
a control-affine representation of the system, and an online
identifying filter is utilized to estimate unknown nonlinear dy-
namics in real time. An actor-critic neural network architecture
is adopted to approximate both the value function and optimal
control policy without requiring full-state information or prior
model identification. The convergence of the learning process
and closed-loop stability are rigorously established through
Lyapunov-based analysis. Simulation results demonstrate the
effectiveness of the proposed approach compared to existing
learning-based and disturbance rejection methods.

II. PRELIMINARIES

A. Servo Model Dynamics
The servo drive primarily consists of two key components:

the stator coil and the rotor. When a stator voltage vs is
applied, it induces a current is that produces a rotational torque
defined by Te(is) = kT is, where kT > 0 is the torque constant.
This torque drives the rotor, resulting in angular speed ω

and position θ , while acting against the back-electromotive
force (back-EMF) generated by the stator coil, modeled as
bF(ω) = keω , for some ke > 0. The resulting electromechani-
cal dynamics of the system from the stator input voltage vs to
the rotor position θ can be described by the following third-
order nonlinear system:

θ̇ = ω, Jω̇ =−Bω +Te(is)−TL, (1)
Li̇s = −Ris −bF(ω)+ vs, ∀t ≥ 0, (2)

where TL denotes the mismatched external disturbance torque
arising from an uncertain load. In these equations, the pos-
itive constants J,B,L,R,kT ,ke represent the rotor’s moment
of inertia and viscous friction coefficient, the stator coil’s
inductance and resistance, and the torque and back-EMF
constants, respectively.

These physical parameters are typically affected by varia-
tions in voltage, current, temperature, and other environmental



conditions. To account for such variations, each parameter is
decomposed into a nominal part and an uncertain deviation
component: J = J0 +∆J,B = B0 +∆B,L = L0 +∆L,R = R0 +
∆R,kT = kT,0 +∆kT ,ke = ke,0 +∆ke.

To derive the control-affine representation, the second equa-
tion in (2) is reformulated by incorporating the expressions for
electromagnetic torque Te(is) = kT is and back-EMF bF(ω) =
keω . Substituting these relations into the system dynamics
yields the angular acceleration ω̇ as follows:

ω̇ =−B
J

ω +
kT

J

(
−L

R
i̇s −

ke

R
ω +

1
R

vs

)
− TL

J

=−B
J
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JR
ω − kT L

JR
i̇s +

kT

JR
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JR
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J
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ω =− JR
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ω − L
ke

i̇s +
1
ke
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kT ke
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Based on the above derivation, the third-order model can be
reduced to a second-order control-affine system of the form:

ẋ = g0u+ f , (3)

where x = θ , u = vs, and g0 =
1

ke,0
is a known constant derived

from the nominal back-EMF coefficient. The term f represents
all model uncertainties and external disturbances, and its time
derivative is assumed to be bounded as | ḟ | ≤ f̄ , where f̄ > 0
is a known positive constant. It can be expressed as

f =− JR
kT ke

ω̇ − BR
kT ke

ω − L
ke

i̇s −
∆ke

ke,0(ke,0 +∆ke)
vs −

R
kT ke

TL.

B. Neural Network Approximation

For a continuous function φ(x) : Rn → R defined on a
compact set Ω ⊂Rn, a neural network (NN) can approximate
f (x) using the following model:

φ(x) =W T
σ(x), (4)

where W ∈ Rp×1 is the weight vector, p is the number of
neurons, and σ(x) = [σ1(x), . . . ,σp(x)]T is the basis function
vector.

In this work, the radial basis function (RBF) is employed
as the activation function:

σi(x) = exp
(
− (x−mi)

T (x−mi)

µ2
i

)
,

where mi ∈ Rn is the center of the i-th receptive field and
µi > 0 is its width.

The NN approximation with bounded error is expressed as

φ(x) =W ∗T
σ(x)+ ε(x), (5)

where W ∗ is the optimal weight that minimizes the supremum
of the error over Ω:

W ∗ = arg min
W∈Rp

{
sup
x∈Ω

∥φ(x)−W T
σ(x)∥

}
.

The approximation error ε(x) can be made arbitrarily small
by selecting a sufficiently large number of neurons p in
accordance with the universal approximation theorem [7].

III. PROPOSED CONTROL METHODS

This section introduces the optimal tracking control state-
ment based on the control-affine form (3), and proposes a actor
critic learning-based solution to solve it.

A. Optimal Tracking Control Statement

Consider the control-affine system in (3), and define the
tracking error as e(t) = x(t)−r(t), where r(t) is a desired ref-
erence trajectory. The tracking error dynamics can be written
as

ė = g0u+ f − ṙ, (6)

To evaluate the tracking control performance of a given control
input u, the following value function is defined as

V (e) =
∫

∞

t
r(e(s),u(s))ds, (7)

where the reward function is given by ρ(e,u) = e2 +g2
0u2.

The optimal value function V ∗(e) is obtained by minimizing
the value function over admissible inputs:

V ∗(e) = min
u∈Ψ(Ω)

(∫
∞

t
ρ(e(s),u(s))ds

)
=
∫

∞

t
ρ(e(s),u∗(s))ds

(8)
where Ω⊂R is a compact set containing the origin, and Ψ(Ω)
is the set of admissible control functions.

By taking the time derivative of the optimal value
function V ∗(e) along the system trajectories, the Hamil-
ton–Jacobi–Bellman (HJB) equation is obtained as

H
(

e,u∗,
dV ∗

de

)
= e2 +g2

0u∗2

+
dV ∗

de
(g0u∗+ f − ṙ) = 0, (9)

where H(·) denotes the Hamiltonian. The optimal control input
u∗ is obtained by minimizing the Hamiltonian with respect
to u∗, which leads to the following first-order optimality
condition:

∂H
∂u∗

= 0. (10)

Solving this condition (10) gives

u∗ =− 1
2g0

dV ∗

de
. (11)

The derivative of the optimal value function can be expressed
as

dV ∗

de
= 2γee+2 f +V0(e,x), (12)

where V0(e,x) is defined as

V0(e,x) =
dV ∗

de
−2γee−2 f .

Substituting this expression into the optimal control law yields

u∗ =− 1
g0

(
γee+ f +

1
2

V0

)
. (13)



Since the nonlinear function f and the optimal value func-
tion V ∗(e) are unknown, obtaining an analytical solution to the
HJB equation becomes nearly impossible. To overcome this
challenge, a actor critic learning framework combined with
online identifying filter techniques is proposed to approximate
the solution.

B. Actor-Critic based Optimal Control Solution with Online
Identifying Filter

A primary difficulty in solving the HJB equation is the
estimation of the optimal value function V ∗(e) or its derivative
dV ∗
de . To address this issue, the term V0(e,x), which appears in

the structure of the value function derivative, is approximated
by a neural network (NN) model as

V0(e,x) =W ∗T
V σV (e,x)+ εV (e,x), (14)

where W ∗
V is the unknown ideal weight vector, σV (e,x) is a

designed basis function vector, and εV (e,x) represents the NN
approximation error.

Assumption 1: The ideal weight vector W ∗
V of the neural

network approximation is assumed to be bounded as follows:

∥W ∗
V ∥ ≤ W̄V ,

where W̄V > 0 is a positive constant. ♢
Substituting this approximation into the expressions for dV ∗

de
and u∗ yields

dV ∗

de
= 2γee+2 f +W ∗T

V σV + εV , (15)

u∗ =− 1
g0

(
γee+ f +

1
2
(W ∗T

V σV + εV )

)
. (16)

However, the ideal weight W ∗
V and the nonlinear function f

are still unknown. To address this problem, an online actor-
critic neural network framework is introduced to approximate
the ideal weight W ∗

V , and an identifying filter is employed to
compensate the unknown dynamics f .

The online identifying filter is constructed to provide an
online estimate of the unknown dynamics f , which accounts
for the model uncertainties and external disturbances such as
load torque. The filter dynamics are described as follows:

˙̂x = g0u+ f̂ + γ f ,1x̃ (17)

f̂ = ζ + γ f ,2x̃ (18)

ζ̇ =−γ f ,2ζ − γ
2
f ,2x̃+ γ f ,2

(
f̂ + γ f ,1x̃

)
(19)

where x̃= x− x̂ is the output state filtering error, and γ f ,1,γ f ,2 >
0 are filter learning rates.

Remark 1: The estimated dynamics f̂ generated by the
identifying filter is incorporated into the control design as
a feedforward term to actively compensate for the unknown
disturbances. This approach aligns with the concept of active
disturbance rejection control. The convergence and stability
properties of the proposed filter-based estimation scheme are
analyzed in Section IV. ♢

The critic NN is designed to evaluate the control perfor-
mance by approximating the derivative of the value function.
It is formulated as

dV̂ ∗

de
= 2γee+ f̂ +Ŵ T

c σV (e,x), (20)

where Ŵc is the weight vector of the critic NN and σV (e,x)
denotes the basis function vector. The weight update law for
the critic is given by

˙̂Wc =−γcσV (e,x)σT
V (e,x)Ŵc, (21)

where γc > 0 is a learning rate of the critic NN.
The actor NN is designed to approximate the W ∗T

V σV term,
which is used in the actual control input based on the critic
NN evaluation. It is defined as

û∗ =− 1
g0

(
γee+ f̂ +

1
2

Ŵ T
a σV (e,x)

)
, (22)

where Ŵa is the actor weight vector. The weight update law
for the actor is given by

˙̂Wa =−σV (e,x)σT
V (e,x)

(
γa
(
Ŵa −Ŵc

)
+ γcŴc

)
, (23)

where γa > 0 is a learning rate of the actor NN. Based on (20)
and (22), the approximated HJB equation can be expressed as
follows:

Ĥ
(

e, û∗,
dV̂ ∗

de

)
= e2 +g2

0û∗2 +
dV̂ ∗

de
(g0û∗+ f − ṙ)

= e2 +

(
γee+ f̂ +

1
2

Ŵ T
a σV (e,x)

)2

+
(
2γee+ f̂ +Ŵ T

c σV (e,x)
)
×(

f − γee− f̂ − 1
2

Ŵ T
a σV (e,x)− ṙ

)
.

And the Bellman residual error for the approximated Hamil-
tonian is defined as

δB = Ĥ
(

e, û∗,
dV̂ ∗

de

)
−H

(
e,u∗,

dV ∗

de

)
= Ĥ

(
e, û∗,

dV̂ ∗

de

)
,

(24)
The solution û∗ minimizes the approximated Hamiltonian
Ĥ
(

e, û∗, dV̂ ∗
de

)
. In particular, if the condition Ĥ

(
e, û∗, dV̂ ∗

de

)
= 0

is satisfied, then û∗ is the unique solution that also satisfies the
true Hamiltonian equation H

(
e,u∗, dV ∗

de

)
= 0. Fig. 1 illustrates

the overall structure of the proposed control system.
Remark 2: The NN update laws given in (21) and (23) are

designed to asymptotically drive the approximated Hamilto-
nian Ĥ

(
e, û∗, dV̂ ∗

de

)
toward zero. This facilitates convergence

of the actor and critic networks to the optimal control policy.
The closed-loop stability and convergence properties of this
learning mechanism are analyzed in Section IV. ♢



Fig. 1: Proposed online actor critic learning based optimal
control solution

IV. CLOSED-LOOP ANALYSIS

This section presents the stability and convergence analysis
of the proposed control framework presented in Section III. A
Lyapunov-based approach is employed to verify the bounded-
ness of the closed-loop system and the asymptotic behavior of
the learning dynamics under the actor-critic structure with the
identifying filter.

Lemma 1: The actor and critic NN update laws defined
in (21) and (23) guarantee that the Bellman residual error δB
converges to 0 asymptotically as t → ∞. ♢

Proof: According to the optimality condition, the optimized
solution û∗ satisfies the Bellman residual error condition δB =
0. When this condition holds and the solution is unique, it is
equivalent to the following first-order condition:

∂ Ĥ(e, û∗, dV̂ ∗
de )

∂Ŵa
=

1
2

σV (e,x)σT
V (e,x)

(
Ŵa −Ŵc

)
= 0. (25)

To analyze the satisfaction of this optimality condition,
consider the following positive definite function:

P =
(
Ŵa −Ŵc

)T (Ŵa −Ŵc
)
, (26)

which plays the role of a Lyapunov-like candidate. If P = 0,
then the optimality condition is satisfied, implying conver-
gence of the actor and critic neural network weights.

Based on the neural network update laws in (21) and (23),
the time derivative of P is computed as

dP
dt

=
dP

dŴc

˙̂Wc +
dP

dŴa

˙̂Wa. (27)

Using the identity dP
dŴa

=− dP
dŴc

= 2(Ŵa −Ŵc) and substituting
the update laws yields

dP
dt

=−2γc(Ŵa −Ŵc)
T

σ(x,e)σT (x,e)Ŵc

−2(Ŵa −Ŵc)
T

σ(x,e)σT (x,e)
(
γa(Ŵa −Ŵc)+ γcŴc

)
=−2(Ŵa −Ŵc)

T
σ(x,e)σT (x,e)

(
γa(Ŵa −Ŵc)

)
.

This expression can be rearranged as

dP
dt

=−2γa(Ŵa −Ŵc)
T

σ(x,e)σT (x,e)(Ŵa −Ŵc)≤ 0. (28)

Since P≥ 0 and Ṗ≤ 0, it follows that P→ 0 as t →∞, ensuring
that the optimality condition is asymptotically satisfied. ■

Theorem 1: The closed-loop system under the proposed
actor-critic update laws and identifying filter is uniformly
ultimately bounded. ♢

Proof: To analyze the stability of the closed-loop system,
consider the following Lyapunov function candidate:

L =
1
2

e2 +
1
2

f̃ 2 +
1
2

W̃ T
c W̃c +

1
2

W̃ T
a W̃a, (29)

where W̃c = Ŵc−W ∗
V , W̃a = Ŵa−W ∗

V and f̃ = f − f̂ . The time
derivative of L is derived as follows:

L̇ = e(g0û∗+ f − ṙ)+ f̃ ˙̃f +W̃c
˙̃Wc +W̃a

˙̃Wa

=−γee2 − 1
2

eŴ T
a σV + e f̃ − eṙ+ f̃ (−γ f ,2 f̃ + ḟ )

− γcW̃ T
c σV σ

T
V Ŵc −W̃ T

a σV σ
T
V (γa(Ŵa −Ŵc)+ γcŴc)

Applying Young’s inequality: e f̃ ≤ 1
2 e2 + 1

2 f̃ 2, −eṙ ≤ 1
2 e2 +

1
2 ṙ2, and − 1

2 eŴ T
a σa ≤ 1

4 e2 + 1
4Ŵ T

a σaσT
a Ŵa, the Lyapunov

function derivative satisfies the following inequality:

L̇ ≤−γee2 +
1
2

e2 +
1
2

ṙ2 +
1
2

e2 +
1
2

f̃ 2 +
1
4

e2

+
1
4

Ŵ T
a σV σ

T
V Ŵa + f̃ (−γ f ,2 f̃ + ḟ )

− γcW̃ T
c σV σ

T
V Ŵc −W̃ T

a σV σ
T
V
(
γa(Ŵa −Ŵc)+ γcŴc

)
=−

(
γe −

5
4

)
e2 − γcW̃ T

c σV σ
T
V Ŵc − γaW̃ T

a σV σ
T
V Ŵa

+(γa − γc)W̃ T
a σV σ

T
V Ŵc +

1
4

Ŵ T
a σV σ

T
V Ŵa

+ f̃
(
−(γ f ,2 −1) f̃ + ḟ

)
+

1
2

ṙ2

Using the relationships W̃a = Ŵa − W ∗
V ,W̃c = Ŵc − W ∗

V
it follows that: W̃ T

c σV σT
V Ŵc = 1

2W̃ T
c σV σT

V W̃c +
1
2ŴcσV σT

V Ŵc − 1
2

(
W ∗T

V σV
)2, and Ŵ T

a σV σT
V Ŵa =

1
2W̃ T

a σV σT
V W̃a + 1

2ŴaσV σT
V Ŵa − 1

2

(
W ∗T

V σV
)2. Based on

these expressions, the Lyapunov derivative can be rewritten
as follows:

L̇ ≤−
(

γe −
5
4

)
e2 − γc

2
W̃ T

c σV σ
T
V W̃c

− γa

2
W̃ T

a σV σ
T
V W̃a +(γa − γc)W̃ T

a σV σ
T
V Ŵc

− γc

2
ŴcσV σ

T
V Ŵc −

(
γa

2
− 1

4

)
ŴaσV σ

T
V Ŵa

+
(

γc

2
+

γa

2

)
(W ∗T

V σV )
2 + f̃

(
−(γ f ,2 −1) f̃ + ḟ

)
+

1
2

ṙ2

Applying Young’s inequality: (γa − γc)W̃ T
a σV σT

V Ŵc ≤
(γa−γc)

2 W̃ T
a σV σT

V W̃a + (γa−γc)
2 ŴcσV σT

V Ŵc, the Lyapunov



function derivative satisfies the following inequality:

L̇ ≤−
(

γe −
5
4

)
e2 − γc

2
W̃ T

c σV σ
T
V W̃c −

γa

2
W̃ T

a σV σ
T
V W̃a

+
(γa − γc)

2
W̃ T

a σV σ
T
V W̃a +

(γa − γc)

2
Ŵ T

c σV σ
T
V Ŵc

− γc

2
Ŵ T

c σV σ
T
V Ŵc −

(
γa

2
− 1

4

)
Ŵ T

a σV σ
T
V Ŵa

+
(

γc

2
+

γa

2

)(
W ∗T

V σV
)2

+ f̃
(
−(γ f ,2 −1) f̃ + ḟ

)
+

1
2

ṙ2

=

(
γe −

5
4

)
e2 − γc

2
W̃ T

c σV σ
T
V W̃c −

γc

2
W̃ T

a σV σ
T
V W̃a

−
(

γc −
γa

2

)
Ŵ T

c σV σ
T
V Ŵc −

(
γa

2
− 1

4

)
Ŵ T

a σV σ
T
V Ŵa

+
(

γc

2
+

γa

2

)(
W ∗T

V σV
)2

+ f̃
(
−(γ f ,2 −1) f̃ + ḟ

)
+

1
2

ṙ2

Under the boundedness assumptions | ḟ | ≤ f̄ and ∥W ∗
V ∥ ≤ W̄V ,

the following inequality is obtained:

L̇ ≤−
(

γe −
5
4

)
e2 − γc

2
W̃ T

c σV σ
T
V W̃c −

γc

2
W̃ T

a σV σ
T
V W̃a

−
(

γc −
γa

2

)
Ŵ T

c σV σ
T
V Ŵc −

(
γa

2
− 1

4

)
Ŵ T

a σV σ
T
V Ŵa

+
(

γc

2
+

γa

2

)
(W ∗T

V σV )
2 −

(γ f ,2 −1)
2

f̃ 2

−
(

γ f ,2 −1
2

)
f̃
(

f̃ − 2 f̄
γ f ,2 −1

)
+

1
2

ṙ2

Based on the gain conditions γe >
5
4 , γc >

γa
2 , γ f ,2 > 1, and

2 f̄
γ f ,2−1 ≈ 0, the Lyapunov derivative is bounded by

L̇ ≤−
(

γe −
5
4

)
e2 − γc

2
W̃ T

c σV σ
T
V W̃c

− γc

2
W̃ T

a σV σ
T
V W̃a −

(γ f ,2 −1)
2

f̃ 2 + c,
(30)

where C(t) =
(

γc
2 + γa

2

)
(W ∗T

V σV )
2 + 1

2 ṙ2 is bounded such
that C(t) ≤ c. Let λ min

v denote the minimum eigenvalue of
σV σT

V . Then, the derivative can be further bounded as

L̇ ≤−αL+ c, (31)

where α = min
{

2
(
γe − 5

4

)
, γcλ min

v , (γ f ,2 −1)
}

.
■

V. SIMULATION VALIDATION

A. Simulation Setup

This subsection provides detailed information about the
simulation environment and the design parameters used for
the proposed control strategy. The proposed controller was
implemented in the MATLAB/Simulink 2024b environment
using the servo motor model described by equations (1) and
(2). The motor parameters were configured as follows: J =
4.3×10−5, B= 0.1J, kT = ke = 0.068, R= 0.078, L=
1.3×10−4.

The actor and critic NNs were each implemented with 16
neurons. The basis function for the i-th neuron (i = 1, . . . ,16)
was defined as:

σV,i(e,x) = exp

(
−
(
[e,x]T − 1

2 [i, i]
T
)T (

[e,x]T − 1
2 [i, i]

T
)

32

)
.

The design gains were selected as:

γe = 20, γ f ,1 = 100, γ f ,2 = 227.5, γc = 42, γa = 23.

The initial weights of the NNs were initialized as:

Ŵa(0) = [6, . . . ,6]T ∈ R16×1, Ŵc(0) = [4, . . . ,4]T ∈ R16×1.

For comparative analysis, the proposed method was evalu-
ated alongside two representative online learning-based control
approaches.

• Case 1: Identifier-based actor critic learning approach
with full state feedback [8],

• Case 2: Extended state observer (ESO)-based actor critic
learning controller with output feedback [9],

These two methods were selected based on their relevance
to the problem setting. Case 1 represents an ideal learning-
based control scheme that requires full state information and
involves high computational cost. In contrast, Case 2 adopts
an observer-based approach to estimate unmeasured states,
making it more suitable for practical output-feedback scenarios
while maintaining the online learning framework.

B. Simulation Results

To evaluate the tracking performance, the desired reference
trajectory and external load disturbance were defined as:

r = 8sin(2π ·0.3t)+3cos(2π ·0.2t)cos(2π ·0.4t)
(
1− e−0.2t) ,

TL = 0.4θ + sin2(2π ·0.2t).

The initial condition was set to θ(0) = 20 rad. Fig. 2 illustrates
the controlled output responses for three different control
strategies, while Fig. 3 presents the corresponding tracking
errors. Table I summarizes the computation times and RMSE
values for each case. Additionally, Fig. 4 provides RMSE maps
for Case 2 and the proposed method with respect to variations
in the control gain.

As shown in Figs. 2–3 and Table I, Case 1 exhibited the
most stable transient behavior and achieved the best RMSE
performance, although it includes slight noise compared to
the proposed method. However, this method requires full state
feedback and incurs the highest computational cost. In con-
trast, Fig. 4 visualizes the RMSE performance variation with
respect to control gain parameters for Case 2 and the proposed
method. The results indicate that the proposed method exhibits
more stable performance over a wider range of gain values,
whereas Case 2 shows significant degradations in RMSE even
with slight gain variations. This implies that Case 2 is more
sensitive to gain selection, which makes the tuning process
more challenging. This highlights the practical advantage of
the proposed method in terms of gain tuning compared to
higher-order ESO-based approaches.



TABLE I: Computation Time and RMSE Comparison

Method Computation Time (s) RMSE
Case 1 8.182×10−6 3.467
Case 2 6.823×10−6 4.915

Proposed 2.165×10−6 3.747

Fig. 2: Controlled output dynamics comparison results.

Fig. 3: Tracking error comparison results.

VI. CONCLUSIONS

This paper presented an online actor critic learning-based
optimal tracking control method for output-feedback servo
positioning systems with unknown dynamics and external dis-
turbances. A control-affine formulation was used to represent
system uncertainties as a lumped unknown function, which
was estimated online using an identifying filter. An actor-critic
neural network structure was employed to approximate the
value function and optimal control policy. Adaptive update
laws were designed to minimize the Bellman residual, and
a Lyapunov-based analysis established closed-loop stability.
Simulation results demonstrated accurate tracking and robust
performance under time-varying disturbances. Future work
will extend the framework to handle constraints on states and
control inputs, and generalize it to complex nonlinear multi-
input multi-output (MIMO) systems.
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