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Abstract—This study presents a physics-informed online learn-
ing method for modeling the flux linkages of synchronous ma-
chines (SMs). The approach trains neural networks (NNs) to learn
the physical laws governing the flux linkages while adhering to
the physical constraints inherent in the model. The learning rules
are designed to satisfy the first-order optimality conditions with
quadratic convergence. The proposed method can be used for
both online state estimation and online model learning, ensuring
fast convergence for local behavior and gradual, comprehensive
convergence for global behavior, respectively.

Index Terms—online learning, physics-informed learning, sta-
tor flux linkages, synchronous machines, system identification

I. INTRODUCTION

A. Background

Synchronous machines (SMs) have been widely used in the
industry. Permanent magnet synchronous machines (PMSMs)
are particularly prevalent in automotive applications for vehi-
cle traction [1], [2]. On the other hand, synchronous reluctance
machines (SynRMs) are considered attractive alternatives to
PMSMs due to their advantages, such as lower cost and the
absence of magnets [3]. Recently, permanent magnet-assisted
SynRMs (PMA-SynRMs), which combine the benefits of both
PMSMs and SynRMs, have been adopted in Tesla’s electric
vehicles.

The electrical dynamics of synchronous machines (SMs) are
described by first-order ordinary differential equations (ODEs)
for the stator flux linkages [4]. Thus, accurate knowledge of
the stator flux linkages is crucial in understanding the electrical
behavior of the SM and designing a controller for the SM.
For instance, model predictive control (MPC), one of the
advanced control techniques based on optimization, utilizes
information on the current values of the stator flux linkages
or the inductances derived from them to predict the future
behavior of the SM and select the optimal control action [5].
Accordingly, the accuracy of used information highly affects
the performance of MPC.

Measuring the stator flux linkages inside the SM is chal-
lenging. Instead, the values of the stator flux linkages can
be estimated at each steady-state operating point by using
the equations derived from setting the time derivative terms
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in the ODEs to zero. The stator flux linkage maps can be
obtained offline by an identification experiment over the entire
operating range [6]. However, the map accuracy depends
on the sophistication of the identification experiment at the
expense of the cost and effort. Although the stator flux
linkage maps are obtained accurately for the operating range
over which the experiment is performed, they cannot deal
with the parameter changes resulting from aging or abnormal
operations, such as temperature increase or demagnetization.
Thus, online estimation of stator flux linkages is crucial.

B. Literature Review

Online estimation methods have been proposed to overcome
the disadvantages of offline identification. The most straight-
forward way was to integrate the ODEs for the stator flux
linkages in the stationary α−β frame to obtain their values [7].
However, the integration suffered errors due to inaccurate ini-
tial or input values. A high-pass filter was generally applied af-
ter the integration to remove the integration errors acting as DC
offsets [8], but it also distorted the frequency response around
and below the cutoff frequency. A method was proposed in [9]
to recover the frequency response distortion by compensating
for the difference between the frequency response of the pure
integrator and the filter at the frequency of the SM rotation.
However, this compensation only works well under steady-
state conditions that the frequency-domain approach assumes,
and it would degrade transient performance.

The stator flux linkages can also be estimated in the rotating
d−q frame. Many studies used the steady-state assumption, by
which the d- and q-axis stator flux linkages were expressed as
explicit functions of the stator voltages and currents [10]. This
approach is simple and easy to implement, but the transient
behavior of the SM was not considered at all. The high-
frequency current injection has also been adopted for the stator
flux linkage estimation [11] and has shown satisfactory steady-
state performance. However, their transient performance was
not sufficiently investigated. State observers, such as the
Luenberger observer [12], sliding mode observer [13], and
extended Kalman filter [14], have been widely investigated
as stator flux linkage estimators, demonstrating satisfactory
transient performance. However, most state observer-based
estimators rely on prior knowledge of the synchronous motor
(SM) electrical parameters, such as inductances, which can
only be accurately identified after the stator flux linkages
are determined. Consequently, their steady-state or transient
performance can degrade when parameter information is inac-
curate.
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Recently, state observer-based online flux linkage estimators
have been proposed, which do not require accurate knowledge
of machine parameters but provide remarkable estimation per-
formance. In [15], a disturbance observer-based flux linkage
estimator (DOBFLE) was proposed, which could estimate
the flux linkages without knowing the accurate value of the
inductance matrix, with the help of the DOB compensating
for the nonlinear disturbance term. An advanced α−β frame-
based estimator was presented in [16], where integration errors
were estimated by a linear state observer and compensated for
in the time domain, which differed from using a frequency-
domain approach. Both methods presented in [15] and [16]
offered remarkable estimation performance even using inac-
curate nominal machine parameters. However, they struggled
to ensure exponential convergence during transient states, as
these observers relied on steady-state assumptions for certain
states. Their transient performance deteriorated significantly
when nominal parameters deviated substantially from the true
parameters.

C. Contributions

The literature review confirms that even state-of-the-art
state observer-based approaches [15], [16] struggle to achieve
exponential convergence during transient states. In response,
this study proposes a novel data-driven approach that guaran-
tees quadratic convergence based on the first-order optimality
conditions [17] during online learning. The key difference be-
tween this approach and existing methods lies in the treatment
of stator flux linkages. While existing methods treat the stator
flux linkages as state variables to be estimated either in the
frequency domain through signal processing or in the time
domain via state observers, this approach views the stator flux
linkages as functions of stator currents, which are identified
through online learning of neural networks (NNs).

Very few studies have investigated data-driven approaches
for the online identification of stator flux linkages, including
[18], where the flux linkage model is represented by a neural
network and trained online based on the error between the
estimated and true flux linkage values. However, calculating
the true flux linkage values is generally inaccurate, leading to
suboptimal performance.

The contributions of the proposed method, and how it differs
from existing data-driven approaches, are as follows:

• The flux linkage model is represented by NNs and iden-
tified through online learning, ensuring quadratic conver-
gence based on the first-order optimality conditions.

• The proposed method incorporates physics-informed
learning , where the electrical dynamics of the flux
linkages (i.e., physical law) are learned without relying
on the true flux linkage values. This is achieved by refor-
mulating the ordinary differential equations (ODEs) for
flux linkages into partial differential equations (PDEs).

• Physics-informed learning also imposes physical con-
straints on the flux linkage during the learning process,
guiding the model and enhancing its robustness.

• The proposed physics-informed online learning method
can be applied for both online state estimation and

online model learning, ensuring fast convergence for local
behavior and a more gradual, comprehensive convergence
for global behavior, respectively.

D. Organization

The paper is outlined as follows: Section II provides pre-
liminaries. Section III introduces the proposed method for
physics-informed online learning of stator flux linkages. The
simulation and experimental results are reported in Sections
IV and ??, respectively. Section V concludes with an outlook
on future work.

II. PRELIMINARIES

A. ODEs describing SM Electrical Dynamics

The electrical dynamics of SM are expressed in the rotating
d-q reference frame by the following ODEs:

dψd(id, iq)

dt
= −Rsid + wrψq(id, iq) + vd, (1a)

dψq(id, iq)

dt
= −Rsiq − wrψd(id, iq) + vq, (1b)

Te = 1.5P (ψd(id, iq)iq − ψq(id, iq)id) , (1c)

where ψd and ψq represent the d- and q-axis flux linkages, re-
spectively; id and iq are the d- and q-axis current, respectively;
vd and vq represent the d- and q-axis voltage, respectively; Rs

denotes the stator resistance Rs; wr represents the electrical
rotor speed; Te is the output torque; and P is the number of
pole pairs. Regarding the ODEs, the following assumptions
are made:

• The d- and q-axis currents (id and iq) and the electrical
rotor speed (wr) are known from direct measurements.

• The stator resistance (Rs) is assumed to be known.
• The inverter nonlinearity can be modeled and accurately

compensated using the method presented in [19] (see
Section III-E for more details). Therefore, the d- and q-
axis voltages (vd and vq) are known from the reference
voltages, which are corrected for nonlinearity.

The flux linkages are generally modeled as nonlinear func-
tions of the currents. Consequently, the time derivatives of the
flux linkages can be expressed as follows:[

dψd/dt
dψq/dt

]
=

[
∂ψd/∂id ∂ψd/∂iq
∂ψq/∂id ∂ψq/∂iq

] [
did/dt
diq/dt

]
, (2)

where the partial derivatives are the d- and q-axis differential
inductances, defined as Ldd := ∂ψd/∂id and Lqq := ∂ψq/∂iq ,
and the mutual differential inductances, defined as Ldq :=
∂ψd/∂iq and Lqd := ∂ψq/∂id.

B. Interpreting ODEs as PDEs

The ODEs (1a) and (1b) can be reinterpreted as PDEs
by substituting the terms dψd/dt and dψq/dt with their
corresponding expressions from (2), and treating did/dt and
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diq/dt in (2) as time-varying parameters that can be measured.
This yields the following PDEs:

did
dt

∂ψd

∂id
+
diq
dt

∂ψd

∂iq
= −Rsid + wrψq(id, iq) + vd, (3a)

did
dt

∂ψq

∂id
+
diq
dt

∂ψq

∂iq
= −Rsiq − wrψd(id, iq) + vq. (3b)

This interpretation lays the foundation for employing physics-
informed learning to perform online identification of the flux
linkage model in SMs.

C. Constraints in Flux Linkages

Each synchronous machine (SM) exhibits distinct nonlinear
characteristics for flux linkages; however, they share some
common properties:

Ldd(id, iq) > 0, Lqq(id, iq) > 0 (4)

while Ldq and Lqd can be either positive or negative. The
primary distinction between different types of SMs lies in the
values of ψd and ψq at zero currents:[
ψd(0, 0)
ψq(0, 0)

]
=

{ [
λpm 0

]T
,PMSM,PMa− SynRM[

0 0
]T
, SynRM

(5)

where λpm > 0 represents the flux linkage due to the
permanent magnets. Permanent magnet synchronous machines
(PMSM) and permanent magnet-assisted synchronous reluc-
tance machines (PMa-SynRM) exhibit nonzero flux linkages
due to the presence of permanent magnets, while synchronous
reluctance machines (SynRM), which do not use permanent
magnets, have zero flux linkages at zero currents.

III. PHYSICS-INFORMED ONLINE LEARNING OF FLUX
LINKAGE MODEL

A. Problem Formulation

In this study, the flux linakges are modeled using xxx NNs
as follows:

ψd(id, iq) =WT
d σd(id, iq) + ϵd(id, iq), (6a)

ψq(id, iq) =WT
q σq(id, iq) + ϵq(id, iq), (6b)

where Wd ∈ Rm and Wq ∈ Rm represent the weight vectors
for the d- and q-axis flux linkages, respectively; σd ∈ Rm

and σq ∈ Rm are nonlinear activation functions for the d- and
q-axes; and ϵd and ϵq denote the approximation errors of the
NNs, which are bounded by sufficiently small positive values
according to the universal approximation theorem [20]. The
objective is to learn the weight vectors online and identify the
estimated flux linkage model as follows:

ψ̂d(Ŵd, id, iq) = ŴT
d σd(id, iq), (7a)

ψ̂q(Ŵq, id, iq) = ŴT
q σq(id, iq), (7b)

where Ŵd ∈ Rm and Ŵq ∈ Rm are the estimated weight
vectors for the d- and q-axis flux linkages, respectively,

which are learned online. The estimated (mutual) differential
inductances are expressed as:

L̂dd(Ŵd, id, iq) : =
∂ψ̂d

∂id
= ŴT

d

∂σd(id, iq)

∂id
, (8a)

L̂dq(Ŵd, id, iq) : =
∂ψ̂d

∂iq
= ŴT

d

∂σd(id, iq)

∂iq
, (8b)

L̂qd(Ŵq, id, iq) : =
∂ψ̂q

∂id
= ŴT

q

∂σq(id, iq)

∂id
, (8c)

L̂qq(Ŵq, id, iq) : =
∂ψ̂q

∂iq
= ŴT

q

∂σq(id, iq)

∂iq
. (8d)

The PDEs in (3) can be discretized using the Euler method
with a sampling time Ts, where all partial derivatives are
expressed in terms of inductance notations, resulting in the
following discrete-time equations:

Ldd,k (id,k+1 − id,k) + Ldq,k (iq,k+1 − iq,k)

= Ts (−Rsid,k + wr,kψq,k + vd,k)
(9a)

Lqd,k (id,k+1 − id,k) + Lqq,k (iq,k+1 − iq,k)

= Ts (−Rsiq,k − wr,kψd,k + vq,k) ,
(9b)

where the subscript k denotes the discrete time step; Lxy,k =
Lxy(id,k, iq,k) with x = d, q and y = d, q; and ψx,k =
ψx(id,k, iq,k) with x = d, q. The errors in the discretized
PDEs, resulting from substituting the estimated flux linkages
ψ̂d(Ŵd, id, iq) and ψ̂q(Ŵq, id, iq), are given by:

ed,k+1 := L̂dd,k (id,k+1 − id,k) + L̂dq,k (iq,k+1 − iq,k)

− Ts

(
−Rsid,k + wr,kψ̂q,k + vd,k

)
,

(10a)

eq,k+1 := L̂qd,k (id,k+1 − id,k) + L̂qq,k (iq,k+1 − iq,k)

− Ts

(
−Rsiq,k − wr,kψ̂d,k + vq,k

)
.

(10b)

Define the weight vector as W :=
[
WT

d WT
q

]T ∈ R2m

and the estimate of it as Ŵ :=
[
ŴT

d ŴT
q

]T ∈ R2m. Let K
denote the set of time steps selected for learning, which can be
udpated in real-time (see Section III-D for more details). The
objective function for minimizing the PDE errors is defined as

Jp(Ŵ ) =
∑
k∈K

1

2

(
ê2d,k + ê2q,k

)
. (11)

To enhance the capability of the PDE solutions for predicting
measurable data (i.e., the d- and q-axis currents), the current
prediction performance is also incorporated into the learning
process. The current predictions are derived as follows:[

îd,k+1

îq,k+1

]
=

[
id,k
iq,k

]
+ Ts

[
L̂dd,k L̂dq,k

L̂qd,k L̂qq,k

]−1 [
−Rsid,k + wr,kψ̂q,k + vd,k
−Rsiq,k − wr,kψ̂d,k + vq,k

]
.

(12)

The objective function for minimizing the data prediction
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errors is defined as

Jd(Ŵ ) =
∑
k∈K

1

2

((
imeas
d,k − îd,k

)2

+
(
imeas
q,k − îq,k

)2
)
,

(13)

where imeas
d,k and imeas

q,k are the measured d- and q-axis
currents, respectively.

Finally, the physics-informed online learning problem is
formulated as follows:

min
Ŵ

J(Ŵ ) = wpJp(Ŵ ) + wdJd(Ŵ ) (14a)

subject to

ceq(Ŵ ) = ψ̂q(Ŵq, 0, 0) = 0, (14b)

cin1 (Ŵ ) = ψ̂d(Ŵd, 0, 0) ≥ λpm, (14c)

cin2 (Ŵ ) = L̂dd(Ŵd, id, iq) ≥ Ldd, (14d)

cin3 (Ŵ ) = L̂qq(Ŵq, id, iq) ≥ Lqq, (14e)

for (id, iq) = (), (), ...

where wp and wd are the weighting factors for the objective
functions Jp and Jd, respectively. The lower bounds λpm ≥ 0,
Ldd > 0, and Lqq > 0 represent the minimum values for
λpm, Ldd, and Lqq , respectively. The objective function (14a)
is designed to optimize the learning of the PDEs (9), while
minimizing the data prediction error. Constraints (14b) and
(14c) enforce (5), and constraints (14d) and (14e) impose (4).
If the lower bounds λpm, Ldd, and Lqq are unknown, they can
be set to zero.

B. Learning Rules

The learning rules to solve the constrained optimization
problem (14) are derived using the first-order optimality con-
ditions [17]. The Lagrangian function is defined as follows:

L(Ŵ , λeq, λin) := J(Ŵ )− λeqceq(Ŵ )−
∑
j∈A

λinj c
in
j (Ŵ )

where λeq is the Lagrange multiplier for the equality constraint
ceq , λinj is the Lagrange multiplier for the inequality constraint
cinj , with λin = [λin1 , λ

in
2 , λ

in
3 ]T , and A := {j ∈ I | cinj ≤ 0}

is the active set.
The learning rules for updating the estimated weight vector

Ŵ and the Lagrangian multipliers λeq and λinj∈A are as
follows:

Ŵn = Ŵn−1 − Tsα
∂L(Ŵ , λeq, λin)

∂Ŵ
, (15a)

λeqn = λeqn−1 + Tsβ
eqceq(Ŵ ), (15b)

λinj,n = max
(
λinj,n−1 + Tsβ

in
j c

in
j (Ŵ ), 0

)
,∀j ∈ A, (15c)

where subscript n denotes the current time step, α is the
learning rate for the weight vectors, and βeq and βin

j are
the learning rates for the Largangian multipliers λeq and λinj ,
respectively.

C. Convergence Analysis

Assuming that the sampling time Ts is sufficiently small,
the learning rules (15) can be expressed in the continuous-

time domain as follows:

˙̂
W = −α∂L(Ŵ , λeq, λin)

∂Ŵ
, (16a)

λ̇eq = βeqceq(Ŵ ), (16b)

λ̇inj = βin
j c

in
j (Ŵ ),∀j ∈ A, (16c)

where cinj is assumed to be instantly active during the update
of λinj , so that λinj remains positive, allowing us to ignore the
maximum operation in (15c).

Let the Lagrangian function L(Ŵ , λeq, λin) serve as the
loss function to be minimized during online learning. The
following theorem provides the basis for convergence.

Theorem 1 Suppose the sampling time Ts is sufficiently
small, and cinj is instantly active during the online learning
process. Then, the learning rules (15) update the estimated
weight vector Ŵ , as well as the Lagrangian multipliers λeq

and λinj , to satisfy the first-order optimality conditions for
the loss function L(Ŵ , λeq, λin), achieving quadratic conver-
gence.

PROOF Taking the time derivative of the loss function gives:

L̇ =
∂L

∂Ŵ

˙̂
W +

∂L

∂λeq
λ̇eq +

∑
j∈A

∂L

∂λinj
λ̇inj (17)

= −α
∥∥∥∥ ∂L∂Ŵ

∥∥∥∥2 − βeq(ceq)
2 −

∑
j∈A

βin
j

(
cinj

)2
(18)

< 0. (19)

This result demonstrates that the learning rules (15) ensure
the satisfaction of the first-order optimality conditions with
quadratic convergence.

Remark 1 In general, satisfying the first-order optimality
conditions only guarantees the necessary conditions for opti-
mality, meaning the solution could be a local minimum, a local
maximum, or a saddle point. However, the proposed method
is more likely to converge to a local minimum, aided by the
constraints imposed during learning. Proper selection of the
NNs and their initial values further ensures convergence to
the local minimum.

D. Learning Modes

1) Online state estimation mode: In this mode, the pro-
posed method estimates the current values of the flux linkages
online. The NNs (6) are updated using data only from the
current operating point (i.e., K = {n}). The estimated weight
vector must be updated quickly to adapt to changes in the
operating point, using sufficiently high learning rates α, βeq ,
and βin

j . While the NNs may become overfitted to the current
operating point and may not capture the global behavior
of the flux linkages, this mode provides fast and accurate
estimations, which are typically sufficient for conventional
current controller design and one-step-ahead model predictive
control (MPC) schemes.

2) Online model learning mode: In this mode, the proposed
method is used to learn the global behavior of the flux linkages
online by utilizing a data buffer that collects data from past
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Fig. 1. Schematic diagram of the proposed physics-informed online learning
method for the flux linkage model of SMs.

operating points (i.e., K = {n, n − a, n − b, . . . }, where b >
a > 0). The number of data points in the buffer should be at
least equal to the number of parameters in the weight vectors
Wd or Wq to prevent overfitting. Lower learning rates can be
used to ensure stable learning of the global behavior. The flux
linkage model learned in this mode can be applied in advanced
algorithms, such as multi-horizon MPC, condition monitoring,
fault diagnosis, and rotor temperature estimation.

E. Considerations on Implementation

1) Design of Activation Function: Any nonlinear functions,
including commonly used activation functions for neural net-
works such as the hyperbolic tangent and radial basis function,
can be considered as candidates for the activation functions in
(6). However, the ideal activation function should inherently
represent the behavior of the flux linkages and satisfy the rel-
evant constraints (e.g., (14c) and (14d)). A prototype function
that meets these criteria was proposed in [21]. Based on this,
a suitable candidate for the activation function is defined as:

σd(q) =
[
1 id(q) tanh

(
id(q)

)
i2q(d) ln

(
cosh

(
iq(d)

)) ]T
.

(20)

Each component of the activation function can be further
scaled to ensure that the elements of the estimated weight
vector Ŵ are evenly scaled, which may facilitate online
learning and imporve robustness.

2) Inverter Nonlinearity and Angle Delay: The actual volt-
ages synthesized by the inverter may differ from the reference
voltages determined by the controller due to inverter nonlinear-
ity. If the voltage vector error becomes significant enough to
impact the learning results, it is recommended to compensate
for the inverter nonlinearity. For systems using space vector
pulse width modulation (SVPWM), the compensation method
presented in [19] is applied. This technique analytically models
the average inverter nonlinearity within the switching period
and subtracts it from the reference voltages. For finite control
set (FCS)-based control methods (e.g., FCS-MPC), the inverter
nonlinearity is estimated using a switching device model, and
this estimate is then subtracted from each voltage vector in
the FCS.

The electrical rotor angle of the SM is used to perform
the coordination transformation from the stationary frame to
the d − q frame. If there is a noticeable delay between the

0 0.2 0.4 0.6 0.8 1
0

500

1000

0 0.2 0.4 0.6 0.8 1

-200

0

200

Fig. 2. Operating condition used for the validation of the online state
estimation mode.

rotor angle measurement and the control action, it introduces a
phase error to all vector variables in the d−q frame. To address
this, the angle delay must be identified and compensated.
A straightforward but effective angle delay compensation
method, described in [22], has been adopted in this study.

IV. SIMULATION VALIDATION

A. Simulation Setup

Simulation validation was conducted using MATLAB
R2024a to verify the feasibility of the proposed method.
The simulation environment was adapted from the IPMSM
Torque Control example, incorporating the proposed
method within the control framework. The interior PMSM
(IPMSM) model in this environment had the following specifi-
cations: rated power = 385 W, rated torque = 6 Nm, base speed
= 613 RPM, moment of inertia = 0.025 kg·m2, Imax = 5 A,
Vdc = 250 V, P = 4, Rs = 0.1, Ld = 0.04 H, and Lq = 0.12
H. The IPMSM drive was controlled using a built-in torque
and current control algorithm.

The simulation was divided into two parts. The first part
(see Section IV-B) validated the online state estimation mode
of the proposed method. The IPMSM drive was tasked with
tracking the torque command under the mechanical speed
profile depicted in Fig. 2, while estimating the current flux
linkages values in real time. The second part (see Section
IV-C) evaluated the online model learning mode of the pro-
posed method. The IPMSM drive operated under the Urban
Dynamometer Driving Schedule (UDDS) cycle, a widely-
used operating condition for automotive certification tests. The
objective was to validate the method’s ability to learn the
global behavior of the flux linkage over the course of the given
operating cycle.

The activation functions for the NNs were designed as
follows:

σd =
[
100 id

]T
, (21a)

σq =
[
1 iq

]T
. (21b)
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Fig. 3. Result of the online estimation mode with wp = 1 and wd =
0.0000001. (a) Estimation results of the d- and q-axis flux linkages. (b)
Estimation results of the magnetic flux linkage, and d- and q-axis differential
inductances.

B. Validation of Online State Estimation Mode

C. Validation of Online Model Learning Mode

V. CONCLUSION

This study presented a physics-informed online learning
method for modeling the flux linkages of SMs. To enable the
use of physics-informed learning, the ODEs describing the
electrical dynamics of the SM were reformulated as PDEs.
The learning process was designed to minimize both the PDE
errors, which encode the underlying physical laws, and the
data prediction errors, to enhance prediction accuracy, all
while incorporating physical constraints on the flux linkage
model. The learning rules were shown to exhibit quadratic
convergence. Simulation results using an 385-W IPMSM
demonstrated the potential of the proposed method in both
the online state estimation mode and the online model learning
mode.

However, this study has a notable limitation. The inverter
nonlinearity was assumed to be accurately compensated. Fu-
ture research could address this by incorporating an additional
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Fig. 4. Result of the online estimation mode with wp = 0 and wd =
0.0000001. (a) Estimation results of the d- and q-axis flux linkages. (b)
Estimation results of the magnetic flux linkage, and d- and q-axis differential
inductances.

neural network to simultaneously identify the inverter nonlin-
earity model alongside the flux linkage model.
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