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Abstract— Proximal Policy Optimization (PPO) has shown
promise for autonomous driving; however, it suffers from
sparse rewards, slow convergence, and unsafe behaviors due to
exploration without prior knowledge. These limitations are
particularly critical in safety-sensitive driving scenarios, where
failure events are rare but severe. To address this issue, we
propose LLM-PPO Driver, a framework that enhances PPO-
based motion planning by incorporating high-level semantic
driving knowledge from a Large Language Model (LLM). The
LLM does not participate in real-time decision-making; instead,
it provides structured prior knowledge that is integrated
through reward shaping and imitation learning. This
lightweight and modular design eliminates deployment-time
inference overhead while guiding policy learning toward safer
and more efficient behaviors. Experiments in the Gym highway-
v0 environment demonstrate consistent improvements in task
success and safety over a baseline PPO agent, with imitation
learning yielding the largest performance gain. These results
highlight the effectiveness of leveraging LLM-based prior
knowledge to mitigate unsafe exploration and improve learning
efficiency in autonomous driving.

Keywords—autonomous driving, imitation learning, large
language model (LLM), proximal policy optimization, reward
shaping

I. INTRODUCTION

Autonomous driving represents a complex and safety-
critical sequential decision-making problem that requires
robust perception, reasoning, and control under dynamic and
uncertain environments [1]. Reinforcement learning (RL) has
emerged as a promising paradigm for autonomous driving due
to its ability to learn end-to-end control policies directly from
interaction with the environment, reducing the need for
manually engineered rules [2]. Among RL algorithms,
Proximal Policy Optimization (PPO) [3] has gained
widespread adoption owing to its stability, sample efficiency,
and effectiveness in continuous control tasks. PPO-based
approaches have demonstrated encouraging results in various
driving scenarios [4].

Despite its advantages, PPO suffers from several
limitations when applied to autonomous driving tasks such as
achieving reliable and safe performance, particularly in long-
horizon and safety-sensitive applications. A primary
challenge lies in the design of reward functions, which are
often sparse, delayed, or insufficiently informative to capture
complex driving objectives such as safety, comfort, and
efficiency [5]. As a result, PPO agents may exhibit slow
convergence, unstable exploration, or unsafe behaviors during
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training. These issues are further exacerbated in autonomous
driving environments, where critical events such as collisions
or traffic violations occur infrequently but have severe
consequences. Without explicit guidance or prior knowledge,
PPO must rely solely on trial-and-error interactions, making it
difficult to learn robust and human-like driving policies within
practical training budgets.

To address these challenges, incorporating prior
knowledge into RL has been widely recognized as an effective
strategy, commonly through techniques such as reward
shaping and imitation learning [6, 7]. These methods can
provide additional guidance to the agent, reduce exploration
complexity, and encourage safer behaviors from early training
stages. Recently, Large Language Models (LLMs) have
emerged as powerful representations of human knowledge
and reasoning, capturing rich semantic understanding of
driving rules, traffic norms, and intuitive decision-making [8].
While LLMs have shown promise in high-level planning and
decision support, their integration into low-level continuous
control frameworks for real-time autonomous driving remains
impractical due to prohibitive inference latency [9]. This gap
motivates the exploration of LLMs as high-level knowledge
providers that can guide policy optimization, rather than
replacing established RL algorithms as the primary agents
interacting with the environment.

In this work, we propose LLM-PPO Driver, a framework
that enhances PPO for autonomous driving by leveraging an
LLM as a source of high-level driving knowledge. Rather than
replacing the underlying RL algorithm, the LLM is used as an
auxiliary guidance module in two independent settings. In the
first setting, the LLM is utilized for reward shaping, where
high-level semantic driving knowledge is translated into
informative reward signals that densify sparse feedback and
encourage safety-aware behavior by rating agent actions. In
the second setting, the LLM provides expert-like
demonstrations that are incorporated through imitation
learning to guide policy optimization toward human-
consistent driving strategies. Each approach is evaluated
separately to isolate its impact on PPO performance. This
modular design preserves the stability of PPO while enabling
systematic analysis of how LLM-driven prior knowledge
improves autonomous driving policies. Fig. 1 illustrates the
pipeline of our proposed design.

Experimental results demonstrate that incorporating LLM-
driven expert knowledge significantly improves PPO
performance in autonomous driving tasks. Compared to a
baseline PPO agent achieving a mean success step (SSmean) 0f
25.16 and a success rate (SR) of 70%, the LLM-based reward
shaping approach yields notable gains, increasing SSmean to
27.22 and SR to 76%. Similarly, the imitation learning variant
guided by LLM-generated demonstrations further improves



performance, achieving an SSmean 0f 27.85 and an SR of 82%.
These results confirm that both reward shaping and imitation
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Fig. 1. Overview of the LLM-PPO Driver framework.

learning independently enhance policy optimization, with
imitation learning providing the largest overall improvement.
The key contributions of this work are threefold:

e Introducing LLM-PPO Driver, a modular framework
that systematically incorporates LLMs as high-level
knowledge providers within PPO, enabling human
driving intuition in low-level continuous control
without compromising training stability or real-time
execution.

e Designing two independent LLM-guided
mechanisms—semantic reward shaping via action
evaluation and imitation learning via expert
demonstration—integrated separately into PPO. This
separation enables clear performance attribution and
insights into how LLM-derived prior knowledge
influences policy learning in safety-critical driving.

e Validating consistent safety and task success
improvements through extensive simulation. Results
demonstrate that both LLM-driven strategies improve
task completion and safety metrics, highlighting
LLMs' effectiveness as auxiliary reasoning modules
in autonomous driving RL.

The remainder of this paper is organized as follows.
Section II reviews related work on utilizing RL methods,
LLMs and integrating them for autonomous driving tasks.
Section III provides the proposed methodology of LLM-PPO
driver in detail. The results are presented and discussed in
Section IV. Finally, Section V concludes the paper.

II. RELATED WORK

A. RL-based Planning in Autonomous Driving

Autonomous driving systems typically use modular
architectures with perception, prediction, and planning
components. The planning module generates trajectories
balancing safety, comfort, efficiency, and route progress.
Well-defined module interfaces enable focused optimization
and integration of learning-based methods.

RL is widely explored for driving planning, formulating it
as sequential decision-making under dynamic traffic [11, 12].
Recent advances use deep neural networks and continuous
control for complex scenarios [13]. PPO is particularly
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popular for its training stability and effectiveness in
continuous action spaces [14].

However, RL-based planners remain sensitive to reward
design and exploration, often suffering from sparse feedback
and unsafe training behaviors. Prior works use heuristic
reward shaping or expert demonstrations, but these rely on
manually engineered rules and domain-specific heuristics.
These limitations motivate exploring alternative prior
knowledge sources that can guide RL-based planning more
flexible and scalable.

B. Employing LLM in Autonomous Driving

Recent progress in autonomous driving has improved
planning and decision-making [15], but learning-based
systems still face challenges in data efficiency,
interpretability, and incorporating human driving knowledge.
LLMs have attracted attention due to their reasoning
capabilities and ability to encode semantic knowledge,
including traffic rules, conventions, and human decision-
making [16, 17].

Most existing works employ LLMs as high-level planners
or decision-makers through prompt engineering [18] or fine-
tuning [19, 20] to generate driving commands, symbolic
plans, or textual explanations. While these improve
interpretability and reasoning, deploying LLMs in closed-loop
control remains impractical due to inference latency,
reliability concerns, and difficulty translating language
outputs into precise, real-time control actions.

Rather than using the LLM as a planner or controller, we
leverage LLMs as auxiliary knowledge providers that guide
RL-based planning indirectly. By generating reward shaping
signals and expert-like demonstrations, we transfer high-level
semantic driving knowledge into PPO-based policy
optimization without introducing LLMs into the real-time
control loop. This preserves training stability and enables
systematic evaluation of how LLM-derived guidance
improves autonomous driving performance.

C. Integrating LLM and RL for Autonomous Driving

Contemporary efforts integrating LLMs with RL for
autonomous driving have shown that LLMs can incorporate
high-level semantic reasoning and human-like driving
knowledge into data-driven decision-making. While these
works demonstrate that LLMs can improve generalization,
robustness, and interpretability in complex driving scenarios,
they exhibit several limitations.

For example, a hierarchical framework where LLMs act as
high-level planners generating goals, strategies, or meta-
actions during execution has been proposed in [18]. However,
this approach embeds the LLM directly into the decision-
making pipeline. This tight coupling introduces sensitivity to
LLM hallucinations and complicates real-time deployment.
Alternatively, recent hint-based frameworks [19] reduce the
direct influence of LLMs by treating their outputs as auxiliary
signals, but still integrate LLM guidance into policy learning
through state augmentation and additional control modules,
increasing system complexity and runtime overhead. Teacher-
student models that fuse LLM guidance with RL policies [20]
and data-centric distillation pipeline methods [21] mitigate
inference latency through offline LLM use. However, these
approaches require extensive offline data generation, multi-

policy architectures, and complex adaptation mechanisms,
making performance attribution and scalability challenging.
In contrast, our methodology adopts a lightweight,



modular strategy preserving the standard PPO pipeline. We
use LLMs exclusively as offline knowledge providers to

TABLE 1. HYPERPARAMETERS USED FOR TRAINING
Parameter Value
Learning rate 3x10*
Batch size 64
Clip range 0.2
Discount factor 0.99
GAE factor 0.95

generate reward shaping signals or expert demonstrations,
incorporated independently into training. LLMs are not
involved in real-time decision-making or state augmentation,
eliminating inference latency and reducing hallucination
vulnerability. By avoiding hierarchical control, distillation,
and auxiliary modules, our approach enables clear
performance attribution, maintains training stability, and
provides a practical pathway for incorporating semantic
driving knowledge into RL-based planning.

1II. LLM-PPO DRIVER

A. Baseline PPO and Simulation Environment

In this work, we employ the PPO algorithm from the
Stable Baselines3 library [25]. The model utilizes a multi-
layer perceptron (MLP) policy architecture consisting of two
hidden layers with 64 neurons each and Tanh activation
functions. The specific hyperparameters used for training are
summarized in Table I. We conduct experiments in the gym
“highway-v0”  environment [26]. The highway-v0
environment models 4-lane highway driving with surrounding
traffic vehicles governed by rule-based controllers. At each
time step, the agent receives a structured numerical
observation (s) describing the driving scene. The state space
(s) consists of normalized relative kinematic features of the
ego vehicle and surrounding vehicles, including longitudinal
and lateral positions and velocities (X, y, Vx, Vy).

The action space («) is discrete, consisting of five high-
level driving commands: lane change left, lane change right,
maintain current speed and lane, accelerate, and decelerate.
The PPO policy outputs a categorical distribution over these
actions at each time step (a:), enabling the agent to learn
strategic lane-changing and speed-control behaviors under
dynamic traffic conditions.

The reward function (77) follows the default formulation of
the highway-v0 environment and combines safety and
efficiency objectives. A collision incurs a terminal penalty of
—1, enforcing strong safety constraints. To encourage efficient
driving, the agent receives a right-lane reward of 0.1 and a
high-speed reward of 0.4 when maintaining a velocity within
the target range [20,30] m/s. Lane-change actions are assigned
a neutral reward (0) to avoid explicitly biasing lateral
maneuvers. All rewards are normalized, ensuring stable
gradient updates during PPO training. This reward design
provides only coarse guidance and remains insufficient to
encode nuanced driving semantics, motivating the
introduction of LLM-guided reward shaping and imitation
learning.

B. Overview of the Proposed Framework

The proposed LLM-PPO Driver framework builds upon a
standard PPO-based autonomous driving agent that operates
using low-level continuous control actions (steering and
acceleration). An LLM is incorporated as an expert driver that
provides high-level semantic guidance during training only.
Crucially, the LLM is never involved in online policy

inference or real-time control, ensuring that the deployed
agent remains lightweight, efficient, and compatible with real-
world autonomous driving requirements. This design
preserves the stability and scalability of PPO while enabling
the transfer of human-like driving knowledge into policy
learning.

First, a baseline PPO agent is trained using environment
rewards alone. This baseline policy is then used to collect a
fixed set of complete driving trajectories (200 episodes), each
spanning from an initial state to termination. The collected
data includes a set of D = {si, a, ,c, info} for each time step,
where ¢ indicates whether the ego vehicle crashed and info
contains information about the ego vehicle’s speed and
individual component of 7. To enable LLM interaction, the
agent’s numerical observations are translated into textual
descriptions of the driving scenario. The LLM is subsequently
queried in two independent training pipelines: a) for imitation
learning, where the LLM selects expert actions given the
current state; or b) for reward shaping, where the LLM
evaluates the baseline agent’s actions and assigns semantic
feedback scores. The resulting LLM-guided data are then used
to retrain PPO, producing policies that better align with safety,
efficiency, and human driving conventions—without
modifying the PPO architecture or introducing additional
control modules. Each model configuration was trained for a
minimum of 5x10° timesteps, utilizing eight parallel
environments to optimize computational throughput. For the
expert supervision component of the framework, GPT-4.1 was
employed as the primary LLM.

C. Converting State to Text

To enable the LLM to interpret driving scenarios and
provide high-level semantic guidance, the numerical state
observations from the highway-v0 environment are converted
into structured natural language descriptions. Since LLMs
operate on textual inputs, this conversion serves as a critical
interface between low-level RL representations and high-level
expert reasoning.

The kinematic observation of each time step (s:) is mapped
to a textual description (zr) that summarizes the ego vehicle’s
driving context and surrounding traffic. The ego vehicle is
described in terms of its lane position (e.g., left, center, right)
and discretized speed category (e.g., slow, moderate, optimal).
Nearby vehicles are described relative to the ego vehicle using
qualitative distance buckets (e.g., very close, close, far
ahead/behind), relative lane positions, and speed relations
(faster, slower, or similar speed). Only vehicles present in the
observation are included, and the description is dynamically
updated at each time step. Moreover, a set of M = {a;, 1, c,
info} is processed at each time step for reward shaping.

This abstraction transforms continuous and normalized
numerical features into semantically meaningful and compact
descriptions while preserving critical spatial and dynamic
relationships. The resulting text representation provides
sufficient contextual information for the LLM to reason about
safety, efficiency, and driving intent, without exposing low-
level state details. These textual descriptions are subsequently
used as inputs to the LLM for both reward shaping and
imitation learning, enabling the transfer of expert-level
driving knowledge into PPO-based policy optimization.

D. LLM-based Imitation Learning

In this strategy, the LLM serves as an expert driving
advisor that provides policy-level guidance for imitation
learning. Given a textual description of the current driving



state s, produced by the state-to-text conversion module 7, the
LLM evaluates all discrete control actions a and assigns
relative preference scores frum(s:,a) € [—1,1], reflecting expert
judgment in terms of safety, efficiency, and driving quality.
This evaluation relies solely on the present observation,
without access to environment rewards, future outcomes, or
trajectory information, ensuring that the resulting guidance
represents pure expert priors rather than reinforcement
signals.

To obtain a stable and unambiguous supervision target
(are"), the LLM-assigned preference scores frrum (s:,a) are
converted into a discrete expert action via maximum-
preference selection, forming a hard-matching supervision
signal for imitation learning that subsequently guides PPO
policy optimization, as expressed in (1).

aPert =arg max  fir (s, a), (1)
a

This hard selection strategy ensures that expert guidance
remains consistent, interpretable, and robust to noisy or
ambiguous preference signals. Consequently, semantic
driving knowledge from the LLM can be transferred into the
RL policy while preserving the independence of the learning
process and avoiding direct LLM involvement in real-time
control.

Expert actions generated by the LLM are collected offline
and stored in a lookup table that maps normalized textual state
descriptions to discrete expert actions. During training, a
custom vectorized environment wrapper retrieves the expert
action associated with the agent’s previous observation and
compares it with the action executed by the PPO policy,
producing a deterministic imitation signal incorporated
directly into the reward. When the agent’s action matches the
expert recommendation, a positive imitation bonus is applied;
otherwise, a mismatch penalty is imposed. Observations
without available expert annotations are ignored, allowing
uninterrupted learning from environment interaction.

An effective training strategy is essential to fully exploit
limited expert supervision while preserving the stability of on-
policy RL. Accordingly, the agent learns simultaneously from
environment rewards and LLM-derived guidance, enabling
the policy to incorporate semantic driving knowledge without
hindering exploration or convergence. The proposed wrapper
operates transparently on top of PPO without modifying the
policy architecture, observation space, or action space,
thereby supporting efficient reuse of offline expert data,
compatibility with vectorized training, and continuous
monitoring of expert coverage, match rates, and imitation
effectiveness. The final reward used for policy optimization is
defined as:

re=r" + B l(at = aP") - fo l(at # are"),  (2)

where 7" denotes the original environment reward, a7
the expert action provided by the LLM when available, f the
imitation strength, I[-] the indicator function, and o the
mismatch-penalty coefficient. The imitation weight f follows
an exponential decay schedule as shown in (3) defined by:

ﬂ = max (ﬂmin, ﬂ() e_'“), (3)

where fois the initial weight (0.3), Smir is the lower asymptote
(0.05), and « is the decay constant (0.00001). This formulation
allows for a stronger reliance on expert supervision during

early training steps ¢ and facilitates a gradual transition toward
environment-driven optimization as the agent matures.

This joint learning mechanism enables the agent to benefit
from both semantic expert guidance and experiential
feedback, improving sample efficiency, behavioral
consistency, and training stability while preserving the
exploratory capacity of PPO.

E. Employing LLM for Reward Shaping

In this setup, the LLM is employed as a semantic reward
evaluator that provides auxiliary feedback for reward shaping.
Unlike the expert-action advisor described in Section III-D,
which offers policy-level supervision prior to action
execution, this mechanism operates post-action by assessing
the quality of the agent’s realized behavior using all available
contextual information.

In contrast to the imitation-learning setting, the LLM
receives a complete structured textual transition
representation (z: + M) at each step, including the observation,
executed action, environment reward, and auxiliary metadata.
Based on this comprehensive context, the LLM outputs a
continuous quality score within the bounded interval [—1,1],
where negative values denote unsafe or poor decisions, values
near zero indicate neutral or mediocre behavior, and positive
values correspond to safe, efficient, and contextually
appropriate driving. This bounded normalization facilitates
stable integration of semantic feedback into the RL process.

To ensure computational efficiency, LLM evaluations are
pre-computed offline and cached using a composite key
formed from the observation—action pair (and associated
transition context), enabling reuse of semantic scores for
repeated transitions.

To integrate this semantic feedback into PPO in a stable
and efficient manner, we formalize LLM-guided reward
shaping as an additive modification of the environment
reward, enabling continuous supervision without altering the
policy representation or interaction dynamics. Formally, the
final reward used for policy optimization is defined as:

re=rf"+ V¥ tLLM, (4)
where 7" denotes the original environment reward,
rHM represents the semantic quality score assigned by the

LLM to the executed state—action pair, and
y is a fixed scaling coefficient controlling the contribution of
LLM-derived feedback. Unlike the imitation-learning
formulation in in Section III-D, no temporal decay is applied
to S, ensuring consistent semantic guidance throughout
training.

To operationalize this formulation, we implement a
vectorized reward-shaping wrapper that augments the reward
stream without modifying PPO’s learning dynamics. At each
transition, the wrapper converts the previous observation and
executed discrete action into normalized textual
representations via the state-to-text converter, forming a
composite lookup key used to retrieve a pre-computed LLM
reward from an offline cache. When a matching entry exists,
the retrieved semantic score is scaled by £ and additively
combined with the environment reward. Otherwise, the LLM
contribution defaults to zero, allowing uninterrupted learning
from the environment signal alone. The wrapper additionally
records cache hit and miss statistics, enabling quantitative
measurement of semantic reward coverage during learning.

Overall, this formulation allows the LLM to function as a



high-level semantic critic that complements the handcrafted
environment reward. Whereas the environment reward
encodes task-specific numerical heuristics, the LLM

TABLE II. PERFROMANCE EVALUATION OF THE LLM-PPO DRIVER
Models
Metrics . Reward Imitation Learning
Baseline .
Shaping (y=0.3) ($=0.3, a=0.2)

SSmin 2.00 6.00 8.00
SSa1 23.75 30.00 30.00
SSmedian 30.00 30.00 30.00
SSqs 30.00 30.00 30.00
SSmax 30.00 30.00 30.00
SSmean 25.16 27.22 27.85
SR% 70.00 76.00 82.00

evaluation captures holistic behavioral quality by jointly
considering safety, efficiency, situational appropriateness, and
realized outcomes, thereby providing richer supervisory
signals for policy optimization.

IV. RESULTS AND DISCUSSION

A. Evaluation metrics

To evaluate driving safety and task completion, we use
two metrics: Survival Steps (SS) and Success Rate (SR). Each
policy is evaluated over 100 episodes with deterministic
actions, maximum length T = 30 steps, or earlier termination
upon collision or completion. SS measures consecutive time
steps without crashing. We report SS statistics across
episodes: minimum (SSmin), first quartile (SSQ1), median
(SSmedian), third quartile (SSQ3), maximum (SSmax), and
mean (SSmean). SR is the proportion of episodes where the
agent completes the full horizon without collision (SS = T).
SS captures graded safety duration while SR reflects strict
collision-free ~ completion, providing  comprehensive
assessment of policy robustness. During evaluation, traffic
density increases from 1.0 to 1.5 and vehicles from 50 to 70,
creating denser scenarios for stricter safety assessment.

B. Experimental Results

Table II compares the baseline PPO agent with the
proposed LLM-guided reward shaping and imitation learning
strategies. Both LLM-based methods consistently improve
safety and task completion over the baseline, with imitation
learning achieving the strongest performance. In terms of
survival behavior, the baseline exhibits poor worst-case
robustness (SSmin = 2), whereas reward shaping and imitation
learning increase SSmin to 6 and 8, respectively, indicating
substantial reduction of early-collision episodes. Quartile
statistics further show that both LLM-guided approaches
achieve SSq1 = SSmedian = SSq3 = 30, meaning that at least 75
% of evaluation episodes survive the full horizon, while the
baseline (SSq1 = 23.75) remains more failure-prone. Mean
survival duration improves from 25.16 (baseline) to 27.22
with reward shaping and 27.85 with imitation learning. A
similar monotonic trend is observed in collision-free
completion, where SR increases to 76% and 82%,
corresponding to relative improvements of 8.57% and 17.14%
over the 70% baseline. These results demonstrate that offline
LLM-derived semantic supervision significantly enhances
PPO safety and robustness in dense highway scenarios, with

direct policy-level imitation providing greater behavioral
alignment and performance gains than post-hoc reward
shaping.

The ablation results in Fig. 2 demonstrate that both the o
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Fig. 2. Ablation analysis of semantic guidance strength: (a) o in imitation
learning and (b) y in reward shaping

in imitation learning and the y in reward shaping exhibit a
clear optimal operating region. Moderate increases in these
coefficients initially improve performance, as reflected by
higher success rates and longer survival durations, indicating
that stronger semantic guidance enhances behavioral
alignment and safety. However, further increases beyond the
optimal values lead to performance degradation in both
metrics. This decline suggests that excessive reliance on
LLM-derived supervision can suppress effective exploration,
thereby reducing adaptability to diverse traffic scenarios.
These findings highlight the importance of balanced
integration between environment-driven reinforcement and
semantic LLM guidance, confirming that LLM assistance is
most effective when used as a complementary signal rather
than a dominant training objective.

C. Discussion

The experimental results demonstrate that lightweight
semantic integration of LLM guidance into PPO can
substantially enhance autonomous driving performance
without introducing architectural complexity or real-time
inference overhead. Both imitation learning and reward
shaping consistently improve survival duration and collision-
free completion compared with the baseline, confirming that
high-level semantic knowledge from LLMs can effectively
complement environment-driven reinforcement signals.
Critically, these gains are achieved through an offline and
modular framework that preserves PPO stability, maintains
computational efficiency, and enables clear attribution of
performance improvements. These results establish the
practical viability of incorporating LLM-derived semantic



reasoning into safety-critical autonomous driving policies
while preserving real-time control capabilities suitable for
deployment.

The two guidance mechanisms exhibit complementary
performance characteristics. Imitation learning delivers the
highest safety gains, indicating stronger worst-case
robustness. Reward shaping achieves more moderate
improvements but shows smoother and more stable sensitivity
to hyperparameters. Ablation results reveal that imitation
learning is strongly dependent on the mismatch penalty o, with
performance peaking near o = 0.2 before degrading, whereas
reward shaping varies more gradually with the reward weight
v and remains effective across a wider range. This contrast
highlights a key trade-off: imitation learning provides higher
peak performance through direct action supervision, while
reward shaping offers greater robustness and stability under
imperfect tuning. Consequently, imitation learning primarily
accelerates convergence toward safe driving strategies,
whereas reward shaping promotes gradual and stable
performance improvement. Together, these findings indicate
that policy-level supervision and reward-level semantic
evaluation address distinct aspects of RL and may be
synergistically combined to further enhance stability, safety,
and generalization in autonomous driving.

Future work can extend this framework by exploring
tighter integration between imitation learning and reward
shaping, such as iterative or alternating training schemes that
progressively refine both policy alignment and semantic
reward feedback. Such hybrid strategies may further improve
stability, safety, and sample efficiency. Another promising
direction is the design of more elaborate and multi-objective
reward functions that better balance safety, efficiency, and
driving comfort to enable more effective and realistic learning.
In addition, incorporating vision—language models (VLMs)
capable of interpreting sensor-level observations, and
validating the approach in large-scale realistic simulators such
as nuPlan [27], would increase environmental fidelity and
support the transition toward real-world autonomous driving
deployment.

V. CONCLUSION

This paper presents a lightweight framework for
integrating LLM-derived semantic knowledge into PPO-
based autonomous driving without modifying the policy
architecture or requiring real-time LLM inference. By
leveraging oftline LLM guidance through imitation learning
and reward shaping, the approach preserves training stability
and computational efficiency while transferring high-level
driving semantics into RL. Experiments in dense highway
scenarios demonstrated consistent improvements in survival
duration and collision-free completion, confirming the
effectiveness of semantically informed supervision for safety-
critical decision making. These findings establish a practical
pathway for incorporating foundation-model reasoning into
deployable autonomous driving systems and motivate future
work on unified LLM-RL integration and evaluation in large-
scale realistic simulators.
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