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Abstract— Proximal Policy Optimization (PPO) has shown 
promise for autonomous driving; however, it suffers from 
sparse rewards, slow convergence, and unsafe behaviors due to 
exploration without prior knowledge. These limitations are 
particularly critical in safety-sensitive driving scenarios, where 
failure events are rare but severe. To address this issue, we 
propose LLM-PPO Driver, a framework that enhances PPO-
based motion planning by incorporating high-level semantic 
driving knowledge from a Large Language Model (LLM). The 
LLM does not participate in real-time decision-making; instead, 
it provides structured prior knowledge that is integrated 
through reward shaping and imitation learning. This 
lightweight and modular design eliminates deployment-time 
inference overhead while guiding policy learning toward safer 
and more efficient behaviors. Experiments in the Gym highway-
v0 environment demonstrate consistent improvements in task 
success and safety over a baseline PPO agent, with imitation 
learning yielding the largest performance gain. These results 
highlight the effectiveness of leveraging LLM-based prior 
knowledge to mitigate unsafe exploration and improve learning 
efficiency in autonomous driving.  

Keywords—autonomous driving, imitation learning, large 
language model (LLM), proximal policy optimization, reward 
shaping 

I. INTRODUCTION 
Autonomous driving represents a complex and safety-

critical sequential decision-making problem that requires 
robust perception, reasoning, and control under dynamic and 
uncertain environments [1]. Reinforcement learning (RL) has 
emerged as a promising paradigm for autonomous driving due 
to its ability to learn end-to-end control policies directly from 
interaction with the environment, reducing the need for 
manually engineered rules [2]. Among RL algorithms, 
Proximal Policy Optimization (PPO) [3] has gained 
widespread adoption owing to its stability, sample efficiency, 
and effectiveness in continuous control tasks. PPO-based 
approaches have demonstrated encouraging results in various 
driving scenarios [4]. 

Despite its advantages, PPO suffers from several 
limitations when applied to autonomous driving tasks such as 
achieving reliable and safe performance, particularly in long-
horizon and safety-sensitive applications. A primary 
challenge lies in the design of reward functions, which are 
often sparse, delayed, or insufficiently informative to capture 
complex driving objectives such as safety, comfort, and 
efficiency [5]. As a result, PPO agents may exhibit slow 
convergence, unstable exploration, or unsafe behaviors during 

training. These issues are further exacerbated in autonomous 
driving environments, where critical events such as collisions 
or traffic violations occur infrequently but have severe 
consequences. Without explicit guidance or prior knowledge, 
PPO must rely solely on trial-and-error interactions, making it 
difficult to learn robust and human-like driving policies within 
practical training budgets. 

To address these challenges, incorporating prior 
knowledge into RL has been widely recognized as an effective 
strategy, commonly through techniques such as reward 
shaping and imitation learning [6, 7]. These methods can 
provide additional guidance to the agent, reduce exploration 
complexity, and encourage safer behaviors from early training 
stages. Recently, Large Language Models (LLMs) have 
emerged as powerful representations of human knowledge 
and reasoning, capturing rich semantic understanding of 
driving rules, traffic norms, and intuitive decision-making [8]. 
While LLMs have shown promise in high-level planning and 
decision support, their integration into low-level continuous 
control frameworks for real-time autonomous driving remains 
impractical due to prohibitive inference latency [9]. This gap 
motivates the exploration of LLMs as high-level knowledge 
providers that can guide policy optimization, rather than 
replacing established RL algorithms as the primary agents 
interacting with the environment. 

In this work, we propose LLM-PPO Driver, a framework 
that enhances PPO for autonomous driving by leveraging an 
LLM as a source of high-level driving knowledge. Rather than 
replacing the underlying RL algorithm, the LLM is used as an 
auxiliary guidance module in two independent settings. In the 
first setting, the LLM is utilized for reward shaping, where 
high-level semantic driving knowledge is translated into 
informative reward signals that densify sparse feedback and 
encourage safety-aware behavior by rating agent actions. In 
the second setting, the LLM provides expert-like 
demonstrations that are incorporated through imitation 
learning to guide policy optimization toward human-
consistent driving strategies. Each approach is evaluated 
separately to isolate its impact on PPO performance. This 
modular design preserves the stability of PPO while enabling 
systematic analysis of how LLM-driven prior knowledge 
improves autonomous driving policies. Fig. 1 illustrates the 
pipeline of our proposed design. 

Experimental results demonstrate that incorporating LLM-
driven expert knowledge significantly improves PPO 
performance in autonomous driving tasks. Compared to a 
baseline PPO agent achieving a mean success step (SSmean) of 
25.16 and a success rate (SR) of 70%, the LLM-based reward 
shaping approach yields notable gains, increasing SSmean to 
27.22 and SR to 76%. Similarly, the imitation learning variant 
guided by LLM-generated demonstrations further improves 

This work was supported by the National Research Foundation of 
Korea (NRF) grant funded by the Korea government (MSIT) (RS2025-
00554087). 



performance, achieving an SSmean of 27.85 and an SR of 82%. 
These results confirm that both reward shaping and imitation  

 
Fig. 1. Overview of the LLM-PPO Driver framework.  

learning independently enhance policy optimization, with 
imitation learning providing the largest overall improvement. 
The key contributions of this work are threefold:  

• Introducing LLM-PPO Driver, a modular framework 
that systematically incorporates LLMs as high-level 
knowledge providers within PPO, enabling human 
driving intuition in low-level continuous control 
without compromising training stability or real-time 
execution. 

• Designing two independent LLM-guided 
mechanisms—semantic reward shaping via action 
evaluation and imitation learning via expert 
demonstration—integrated separately into PPO. This 
separation enables clear performance attribution and 
insights into how LLM-derived prior knowledge 
influences policy learning in safety-critical driving. 

• Validating consistent safety and task success 
improvements through extensive simulation. Results 
demonstrate that both LLM-driven strategies improve 
task completion and safety metrics, highlighting 
LLMs' effectiveness as auxiliary reasoning modules 
in autonomous driving RL. 

 The remainder of this paper is organized as follows. 
Section II reviews related work on utilizing RL methods, 
LLMs and integrating them for autonomous driving tasks. 
Section III provides the proposed methodology of LLM-PPO 
driver in detail. The results are presented and discussed in 
Section IV. Finally, Section V concludes the paper. 

II. RELATED WORK 

A. RL-based Planning in Autonomous Driving 
Autonomous driving systems typically use modular 

architectures with perception, prediction, and planning 
components. The planning module generates trajectories 
balancing safety, comfort, efficiency, and route progress. 
Well-defined module interfaces enable focused optimization 
and integration of learning-based methods. 

RL is widely explored for driving planning, formulating it 
as sequential decision-making under dynamic traffic [11, 12]. 
Recent advances use deep neural networks and continuous 
control for complex scenarios [13]. PPO is particularly 

popular for its training stability and effectiveness in 
continuous action spaces [14]. 

However, RL-based planners remain sensitive to reward 
design and exploration, often suffering from sparse feedback 
and unsafe training behaviors. Prior works use heuristic 
reward shaping or expert demonstrations, but these rely on 
manually engineered rules and domain-specific heuristics. 
These limitations motivate exploring alternative prior 
knowledge sources that can guide RL-based planning more 
flexible and scalable. 

B. Employing LLM in Autonomous Driving 
Recent progress in autonomous driving has improved 

planning and decision-making [15], but learning-based 
systems still face challenges in data efficiency, 
interpretability, and incorporating human driving knowledge. 
LLMs have attracted attention due to their reasoning 
capabilities and ability to encode semantic knowledge, 
including traffic rules, conventions, and human decision-
making [16, 17]. 

Most existing works employ LLMs as high-level planners 
or decision-makers through prompt engineering [18] or fine-
tuning [19, 20] to generate driving commands, symbolic 
plans, or textual explanations. While these improve 
interpretability and reasoning, deploying LLMs in closed-loop 
control remains impractical due to inference latency, 
reliability concerns, and difficulty translating language 
outputs into precise, real-time control actions. 

Rather than using the LLM as a planner or controller, we 
leverage LLMs as auxiliary knowledge providers that guide 
RL-based planning indirectly. By generating reward shaping 
signals and expert-like demonstrations, we transfer high-level 
semantic driving knowledge into PPO-based policy 
optimization without introducing LLMs into the real-time 
control loop. This preserves training stability and enables 
systematic evaluation of how LLM-derived guidance 
improves autonomous driving performance. 

C. Integrating LLM and RL for Autonomous Driving 
Contemporary efforts integrating LLMs with RL for 

autonomous driving have shown that LLMs can incorporate 
high-level semantic reasoning and human-like driving 
knowledge into data-driven decision-making. While these 
works demonstrate that LLMs can improve generalization, 
robustness, and interpretability in complex driving scenarios, 
they exhibit several limitations.  

For example, a hierarchical framework where LLMs act as 
high-level planners generating goals, strategies, or meta-
actions during execution has been proposed in [18]. However, 
this approach embeds the LLM directly into the decision-
making pipeline. This tight coupling introduces sensitivity to 
LLM hallucinations and complicates real-time deployment. 
Alternatively, recent hint-based frameworks [19] reduce the 
direct influence of LLMs by treating their outputs as auxiliary 
signals, but still integrate LLM guidance into policy learning 
through state augmentation and additional control modules, 
increasing system complexity and runtime overhead. Teacher-
student models that fuse LLM guidance with RL policies [20]  
and data-centric distillation pipeline methods [21] mitigate 
inference latency through offline LLM use. However, these 
approaches require extensive offline data generation, multi- 
 

policy architectures, and complex adaptation mechanisms, 
making performance attribution and scalability challenging. 

In contrast, our methodology adopts a lightweight, 



modular strategy preserving the standard PPO pipeline. We 
use LLMs exclusively as offline knowledge providers to  

TABLE I.  HYPERPARAMETERS USED FOR TRAINING 

Parameter Value 
Learning rate 3 × 10-4 

Batch size 64 
Clip range 0.2 

Discount factor 0.99 
GAE factor 0.95 

generate reward shaping signals or expert demonstrations, 
incorporated independently into training. LLMs are not 
involved in real-time decision-making or state augmentation, 
eliminating inference latency and reducing hallucination 
vulnerability. By avoiding hierarchical control, distillation, 
and auxiliary modules, our approach enables clear 
performance attribution, maintains training stability, and 
provides a practical pathway for incorporating semantic 
driving knowledge into RL-based planning. 

III. LLM-PPO DRIVER 

A. Baseline PPO and Simulation Environment 
In this work, we employ the PPO algorithm from the 

Stable Baselines3 library [25]. The model utilizes a multi-
layer perceptron (MLP) policy architecture consisting of two 
hidden layers with 64 neurons each and Tanh activation 
functions. The specific hyperparameters used for training are 
summarized in Table I. We conduct experiments in the gym 
“highway-v0” environment [26]. The highway-v0 
environment models 4-lane highway driving with surrounding 
traffic vehicles governed by rule-based controllers. At each 
time step, the agent receives a structured numerical 
observation (st) describing the driving scene. The state space 
(s) consists of normalized relative kinematic features of the 
ego vehicle and surrounding vehicles, including longitudinal 
and lateral positions and velocities (x, y, vx, vy). 

The action space (a) is discrete, consisting of five high-
level driving commands: lane change left, lane change right, 
maintain current speed and lane, accelerate, and decelerate. 
The PPO policy outputs a categorical distribution over these 
actions at each time step (at), enabling the agent to learn 
strategic lane-changing and speed-control behaviors under 
dynamic traffic conditions. 

The reward function (rt) follows the default formulation of 
the highway-v0 environment and combines safety and 
efficiency objectives. A collision incurs a terminal penalty of 
−1, enforcing strong safety constraints. To encourage efficient 
driving, the agent receives a right-lane reward of 0.1 and a 
high-speed reward of 0.4 when maintaining a velocity within 
the target range [20,30] m/s. Lane-change actions are assigned 
a neutral reward (0) to avoid explicitly biasing lateral 
maneuvers. All rewards are normalized, ensuring stable 
gradient updates during PPO training. This reward design  
provides only coarse guidance and remains insufficient to 
encode nuanced driving semantics, motivating the 
introduction of LLM-guided reward shaping and imitation 
learning. 

B. Overview of the Proposed Framework 
The proposed LLM-PPO Driver framework builds upon a 

standard PPO-based autonomous driving agent that operates 
using low-level continuous control actions (steering and 
acceleration). An LLM is incorporated as an expert driver that 
provides high-level semantic guidance during training only. 
Crucially, the LLM is never involved in online policy 

inference or real-time control, ensuring that the deployed  
agent remains lightweight, efficient, and compatible with real-
world autonomous driving requirements. This design 
preserves the stability and scalability of PPO while enabling 
the transfer of human-like driving knowledge into policy 
learning. 

First, a baseline PPO agent is trained using environment 
rewards alone. This baseline policy is then used to collect a 
fixed set of complete driving trajectories (200 episodes), each 
spanning from an initial state to termination. The collected 
data includes a set of D = {st, at, rt, c, info} for each time step, 
where c indicates whether the ego vehicle crashed and info 
contains information about the ego vehicle’s speed and 
individual component of rt. To enable LLM interaction, the 
agent’s numerical observations are translated into textual 
descriptions of the driving scenario. The LLM is subsequently 
queried in two independent training pipelines: a) for imitation 
learning, where the LLM selects expert actions given the 
current state; or b) for reward shaping, where the LLM 
evaluates the baseline agent’s actions and assigns semantic 
feedback scores. The resulting LLM-guided data are then used 
to retrain PPO, producing policies that better align with safety, 
efficiency, and human driving conventions—without 
modifying the PPO architecture or introducing additional 
control modules. Each model configuration was trained for a 
minimum of 5×105 timesteps, utilizing eight parallel 
environments to optimize computational throughput. For the 
expert supervision component of the framework, GPT-4.1 was 
employed as the primary LLM. 

C. Converting State to Text 
To enable the LLM to interpret driving scenarios and 

provide high-level semantic guidance, the numerical state 
observations from the highway-v0 environment are converted 
into structured natural language descriptions. Since LLMs 
operate on textual inputs, this conversion serves as a critical 
interface between low-level RL representations and high-level 
expert reasoning. 

The kinematic observation of each time step (st) is mapped 
to a textual description (τt) that summarizes the ego vehicle’s 
driving context and surrounding traffic. The ego vehicle is 
described in terms of its lane position (e.g., left, center, right) 
and discretized speed category (e.g., slow, moderate, optimal). 
Nearby vehicles are described relative to the ego vehicle using 
qualitative distance buckets (e.g., very close, close, far 
ahead/behind), relative lane positions, and speed relations 
(faster, slower, or similar speed). Only vehicles present in the 
observation are included, and the description is dynamically 
updated at each time step. Moreover, a set of M = {at, rt, c, 
info} is processed at each time step for reward shaping.  

This abstraction transforms continuous and normalized 
numerical features into semantically meaningful and compact 
descriptions while preserving critical spatial and dynamic 
relationships. The resulting text representation provides 
sufficient contextual information for the LLM to reason about 
safety, efficiency, and driving intent, without exposing low-
level state details. These textual descriptions are subsequently 
used as inputs to the LLM for both reward shaping and 
imitation learning, enabling the transfer of expert-level 
driving knowledge into PPO-based policy optimization. 

D. LLM-based Imitation Learning 
In this strategy, the LLM serves as an expert driving 

advisor that provides policy-level guidance for imitation 
learning. Given a textual description of the current driving 



arg max 
a 

state st produced by the state-to-text conversion module τt, the 
LLM evaluates all discrete control actions a and assigns 
relative preference scores fLLM (st ,a) ∈ [−1,1], reflecting expert 
judgment in terms of safety, efficiency, and driving quality. 
This evaluation relies solely on the present observation, 
without access to environment rewards, future outcomes, or 
trajectory information, ensuring that the resulting guidance 
represents pure expert priors rather than reinforcement 
signals. 

To obtain a stable and unambiguous supervision target 
(atexpert), the LLM-assigned preference scores fLLM (st ,a) are 
converted into a discrete expert action via maximum-
preference selection, forming a hard-matching supervision 
signal for imitation learning that subsequently guides PPO 
policy optimization, as expressed in (1). 

 atexpert =                 fLLM (st ,a), (1) 

This hard selection strategy ensures that expert guidance 
remains consistent, interpretable, and robust to noisy or 
ambiguous preference signals. Consequently, semantic 
driving knowledge from the LLM can be transferred into the 
RL policy while preserving the independence of the learning 
process and avoiding direct LLM involvement in real-time 
control. 

Expert actions generated by the LLM are collected offline 
and stored in a lookup table that maps normalized textual state 
descriptions to discrete expert actions. During training, a 
custom vectorized environment wrapper retrieves the expert 
action associated with the agent’s previous observation and 
compares it with the action executed by the PPO policy, 
producing a deterministic imitation signal incorporated 
directly into the reward. When the agent’s action matches the 
expert recommendation, a positive imitation bonus is applied; 
otherwise, a mismatch penalty is imposed. Observations 
without available expert annotations are ignored, allowing 
uninterrupted learning from environment interaction. 

An effective training strategy is essential to fully exploit 
limited expert supervision while preserving the stability of on-
policy RL. Accordingly, the agent learns simultaneously from 
environment rewards and LLM-derived guidance, enabling 
the policy to incorporate semantic driving knowledge without 
hindering exploration or convergence. The proposed wrapper 
operates transparently on top of PPO without modifying the 
policy architecture, observation space, or action space, 
thereby supporting efficient reuse of offline expert data, 
compatibility with vectorized training, and continuous 
monitoring of expert coverage, match rates, and imitation 
effectiveness. The final reward used for policy optimization is 
defined as: 

 rt = rtenv + β 𝕀(at = atexpert) -  βα 𝕀(at ≠ atexpert), (2) 

where  rtenv  denotes the original environment reward, atexpert 
the expert action provided by the LLM when available, β the 
imitation strength, 𝕀[⋅] the indicator function, and α the 
mismatch-penalty coefficient. The imitation weight β follows 
an exponential decay schedule as shown in (3) defined by: 

 β = max (βmin, β0 e−κt), (3) 

where β0 is the initial weight (0.3), βmin is the lower asymptote 
(0.05), and κ is the decay constant (0.00001). This formulation 
allows for a stronger reliance on expert supervision during 

early training steps t and facilitates a gradual transition toward 
environment-driven optimization as the agent matures. 

This joint learning mechanism enables the agent to benefit 
from both semantic expert guidance and experiential 
feedback, improving sample efficiency, behavioral 
consistency, and training stability while preserving the 
exploratory capacity of PPO. 

E. Employing LLM for Reward Shaping 
In this setup, the LLM is employed as a semantic reward 

evaluator that provides auxiliary feedback for reward shaping. 
Unlike the expert-action advisor described in Section III-D, 
which offers policy-level supervision prior to action 
execution, this mechanism operates post-action by assessing 
the quality of the agent’s realized behavior using all available 
contextual information. 

In contrast to the imitation-learning setting, the LLM 
receives a complete structured textual transition 
representation (τt  + M) at each step, including the observation, 
executed action, environment reward, and auxiliary metadata. 
Based on this comprehensive context, the LLM outputs a 
continuous quality score within the bounded interval [−1,1], 
where negative values denote unsafe or poor decisions, values 
near zero indicate neutral or mediocre behavior, and positive 
values correspond to safe, efficient, and contextually 
appropriate driving. This bounded normalization facilitates 
stable integration of semantic feedback into the RL process. 

To ensure computational efficiency, LLM evaluations are 
pre-computed offline and cached using a composite key 
formed from the observation–action pair (and associated 
transition context), enabling reuse of semantic scores for 
repeated transitions.  

To integrate this semantic feedback into PPO in a stable 
and efficient manner, we formalize LLM-guided reward 
shaping as an additive modification of the environment 
reward, enabling continuous supervision without altering the 
policy representation or interaction dynamics. Formally, the 
final reward used for policy optimization is defined as: 

 rt = rtenv + γ rtLLM, (4) 

where rtenv denotes the original environment reward, 
rtLLM represents the semantic quality score assigned by the 
LLM to the executed state–action pair, and 
γ is a fixed scaling coefficient controlling the contribution of 
LLM-derived feedback. Unlike the imitation-learning 
formulation in in Section III-D, no temporal decay is applied 
to β, ensuring consistent semantic guidance throughout 
training. 

To operationalize this formulation, we implement a 
vectorized reward-shaping wrapper that augments the reward 
stream without modifying PPO’s learning dynamics. At each 
transition, the wrapper converts the previous observation and 
executed discrete action into normalized textual 
representations via the state-to-text converter, forming a 
composite lookup key used to retrieve a pre-computed LLM 
reward from an offline cache. When a matching entry exists,  
the retrieved semantic score is scaled by β and additively 
combined with the environment reward. Otherwise, the LLM 
contribution defaults to zero, allowing uninterrupted learning  
from the environment signal alone. The wrapper additionally 
records cache hit and miss statistics, enabling quantitative 
measurement of semantic reward coverage during learning. 

Overall, this formulation allows the LLM to function as a 



high-level semantic critic that complements the handcrafted 
environment reward. Whereas the environment reward 
encodes task-specific numerical heuristics, the LLM  

TABLE II.  PERFROMANCE EVALUATION OF THE LLM-PPO DRIVER 

Metrics 
Models 

Baseline Reward 
Shaping (γ=0.3) 

Imitation Learning 
(β=0.3, α=0.2) 

SSmin 2.00 6.00 8.00 

SSQ1 23.75 30.00 30.00 

SSmedian 30.00 30.00 30.00 

SSQ3 30.00 30.00 30.00 

SSmax 30.00 30.00 30.00 

SSmean 25.16 27.22 27.85 

SR% 70.00 76.00 82.00 

evaluation captures holistic behavioral quality by jointly 
considering safety, efficiency, situational appropriateness, and 
realized outcomes, thereby providing richer supervisory 
signals for policy optimization.  

IV. RESULTS AND DISCUSSION 

A. Evaluation metrics 
To evaluate driving safety and task completion, we use 

two metrics: Survival Steps (SS) and Success Rate (SR). Each 
policy is evaluated over 100 episodes with deterministic 
actions, maximum length T = 30 steps, or earlier termination 
upon collision or completion. SS measures consecutive time 
steps without crashing. We report SS statistics across 
episodes: minimum (SSmin), first quartile (SSQ1), median 
(SSmedian), third quartile (SSQ3), maximum (SSmax), and 
mean (SSmean). SR is the proportion of episodes where the 
agent completes the full horizon without collision (SS = T). 
SS captures graded safety duration while SR reflects strict 
collision-free completion, providing comprehensive 
assessment of policy robustness. During evaluation, traffic 
density increases from 1.0 to 1.5 and vehicles from 50 to 70, 
creating denser scenarios for stricter safety assessment.  

B. Experimental Results 
Table II compares the baseline PPO agent with the 

proposed LLM-guided reward shaping and imitation learning 
strategies. Both LLM-based methods consistently improve 
safety and task completion over the baseline, with imitation 
learning achieving the strongest performance. In terms of  
survival behavior, the baseline exhibits poor worst-case 
robustness (SSmin = 2), whereas reward shaping and imitation 
learning increase SSmin to 6 and 8, respectively, indicating 
substantial reduction of early-collision episodes. Quartile 
statistics further show that both LLM-guided approaches 
achieve SSQ1 = SSmedian = SSQ3 = 30, meaning that at least 75 
% of evaluation episodes survive the full horizon, while the 
baseline (SSQ1 = 23.75) remains more failure-prone. Mean 
survival duration improves from 25.16 (baseline) to 27.22 
with reward shaping and 27.85 with imitation learning. A  
similar monotonic trend is observed in collision-free 
completion, where SR increases to 76% and 82%, 
corresponding to relative improvements of 8.57% and 17.14%  
over the 70% baseline. These results demonstrate that offline 
LLM-derived semantic supervision significantly enhances 
PPO safety and robustness in dense highway scenarios, with  

direct policy-level imitation providing greater behavioral 
alignment and performance gains than post-hoc reward  
shaping. 

The ablation results in Fig. 2 demonstrate that both the α  

 
(a) 
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Fig. 2. Ablation analysis of semantic guidance strength: (a) α in imitation 
learning and (b) γ in reward shaping  

in imitation learning and the γ in reward shaping exhibit a 
clear optimal operating region. Moderate increases in these 
coefficients initially improve performance, as reflected by 
higher success rates and longer survival durations, indicating 
that stronger semantic guidance enhances behavioral 
alignment and safety. However, further increases beyond the 
optimal values lead to performance degradation in both 
metrics. This decline suggests that excessive reliance on 
LLM-derived supervision can suppress effective exploration, 
thereby reducing adaptability to diverse traffic scenarios. 
These findings highlight the importance of balanced 
integration between environment-driven reinforcement and 
semantic LLM guidance, confirming that LLM assistance is 
most effective when used as a complementary signal rather 
than a dominant training objective. 

C. Discussion 
The experimental results demonstrate that lightweight 

semantic integration of LLM guidance into PPO can 
substantially enhance autonomous driving performance 
without introducing architectural complexity or real-time 
inference overhead. Both imitation learning and reward 
shaping consistently improve survival duration and collision-
free completion compared with the baseline, confirming that 
high-level semantic knowledge from LLMs can effectively 
complement environment-driven reinforcement signals. 
Critically, these gains are achieved through an offline and 
modular framework that preserves PPO stability, maintains 
computational efficiency, and enables clear attribution of 
performance improvements. These results establish the 
practical viability of incorporating LLM-derived semantic 



reasoning into safety-critical autonomous driving policies 
while preserving real-time control capabilities suitable for 
deployment. 

The two guidance mechanisms exhibit complementary 
performance characteristics. Imitation learning delivers the 
highest safety gains, indicating stronger worst-case 
robustness. Reward shaping achieves more moderate 
improvements but shows smoother and more stable sensitivity 
to hyperparameters. Ablation results reveal that imitation 
learning is strongly dependent on the mismatch penalty α, with 
performance peaking near α = 0.2 before degrading, whereas 
reward shaping varies more gradually with the reward weight 
γ and remains effective across a wider range. This contrast 
highlights a key trade-off: imitation learning provides higher 
peak performance through direct action supervision, while 
reward shaping offers greater robustness and stability under 
imperfect tuning. Consequently, imitation learning primarily 
accelerates convergence toward safe driving strategies, 
whereas reward shaping promotes gradual and stable 
performance improvement. Together, these findings indicate 
that policy-level supervision and reward-level semantic 
evaluation address distinct aspects of RL and may be 
synergistically combined to further enhance stability, safety, 
and generalization in autonomous driving. 

Future work can extend this framework by exploring 
tighter integration between imitation learning and reward 
shaping, such as iterative or alternating training schemes that 
progressively refine both policy alignment and semantic 
reward feedback. Such hybrid strategies may further improve 
stability, safety, and sample efficiency. Another promising 
direction is the design of more elaborate and multi-objective 
reward functions that better balance safety, efficiency, and 
driving comfort to enable more effective and realistic learning. 
In addition, incorporating vision–language models (VLMs) 
capable of interpreting sensor-level observations, and 
validating the approach in large-scale realistic simulators such 
as nuPlan [27], would increase environmental fidelity and 
support the transition toward real-world autonomous driving 
deployment. 

V. CONCLUSION 
This paper presents a lightweight framework for 

integrating LLM-derived semantic knowledge into PPO-
based autonomous driving without modifying the policy 
architecture or requiring real-time LLM inference. By 
leveraging offline LLM guidance through imitation learning 
and reward shaping, the approach preserves training stability 
and computational efficiency while transferring high-level 
driving semantics into RL. Experiments in dense highway 
scenarios demonstrated consistent improvements in survival 
duration and collision-free completion, confirming the 
effectiveness of semantically informed supervision for safety-
critical decision making. These findings establish a practical 
pathway for incorporating foundation-model reasoning into 
deployable autonomous driving systems and motivate future 
work on unified LLM-RL integration and evaluation in large-
scale realistic simulators. 
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