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Abstract—Energy management for fuel cell electric vehicles
(FCEVs) is a challenging trajectory optimization problem. Con-
ventional studies primarily focus on trip-specific optimal control,
where the power distribution is optimized based on a predicted
finite-horizon driving profile. However, these methods often suffer
from a limited look-ahead horizon and fail to guarantee long-
run optimality within the stochastic traffic network where the
vehicle operates. This study proposes a novel framework that
integrates finite-horizon optimal control with traffic network-
aware long-run average costs. We formulate the problem by
embedding the long-run optimality, derived from network-level
transition probabilities, into the terminal cost of the trip-specific
optimization. This approach enables an adaptive target State of
Charge (SOC) that aligns with global network efficiency while
satisfying immediate driving constraints. Simulation results in a
virtual traffic network demonstrate that the proposed integrated
strategy consistently outperforms traditional trip-specific meth-
ods, achieving a maximum performance improvement of 11%.
These findings highlight the necessity of network-level statistical
awareness for maximizing the long-term energy efficiency of
electrified mobility.

Index Terms—Energy management strategy, Fuel cell electric
vehicles (FCEVs), Traffic network-aware, Trip-specific optimal
control, Long-run optimality, Integrated strategy.

I. INTRODUCTION

The energy management strategy (EMS) for multiple power
sources is a fundamental challenge in maximizing the fuel
efficiency of fuel cell electric vehicles (FCEVs). Theoretically,
the optimal energy management problem can be solved via
dynamic programming (DP), but its noncausal nature requires
a priori knowledge of the entire future power demand, making
real-time implementation difficult. To bridge this gap, pre-
dictive energy management (PEM) has emerged, leveraging
intelligent transportation systems (ITS) to anticipate upcoming
driving conditions [1].

Traditionally, PEM has relied on trip-specific strategies that
optimize energy distribution based on a predicted driving
profile for a single, intended journey. These methods typically
estimate future velocity or power demand using stochastic
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models like Markov chains [2] or machine learning tech-
niques [3]. While effective for short-term adjustments, these
trip-specific approaches are often criticized for their “short-
sightedness,” as their optimization is confined to a limited
prediction horizon [4] and fails to account for the long-term
energy implications beyond the immediate trip [5].

To provide more structured guidance, a more advanced
methodology known as SOC node planning (or reference
SOC planning) has been widely adopted [6], [7]. This ap-
proach utilizes navigation data to identify a predicted path
and pre-calculates an optimal SOC trajectory for specific
spatial nodes—such as intersections or hills—along that route.
By assigning fixed SOC targets to these nodes, the vehicle
attempts to balance energy consumption according to the
anticipated terrain and traffic.

However, even with precise navigation, SOC node planning
faces a critical limitation: it is inherently “path-locked.” Most
existing methods pre-determine a final SOC target value based
on a single, fixed destination or a specific predicted trip. Such
a rigid target is often decoupled from the global optimality of
the broader traffic network. In a stochastic driving environment
where a vehicle may encounter unexpected route changes or
continuous operations across multiple journeys, a fixed SOC
target derived only from the current trip can be counterpro-
ductive. It may drive the battery state into a region that is
efficient for the immediate destination but highly suboptimal
for the unpredicted, subsequent links within the network.

Recent studies have attempted to alleviate the short-
sightedness of finite-horizon predictive control by incorporat-
ing cost-to-go functions as terminal costs within model predic-
tive control frameworks [8]. In such approaches, the long-term
information is typically derived from the remaining portion of
a predefined route, where dynamic programming is used to
compute a distance-based cost-to-go under deterministic trip
assumptions. Although effective for a single planned mission,
these methods remain route-dependent and assume that the
future driving sequence is known or fixed. Consequently, their
optimality is still confined to a specific trip and does not
explicitly account for continuous operation within a stochastic
traffic network.



These limitations motivate a broader perspective in which
the vehicle is viewed as operating persistently within a traffic
network rather than along a single predetermined route. In such
a setting, the terminal cost should reflect not the remainder of
a specific trip, but the long-run value of the SOC state within
the entire network. This shift from route-dependent optimality
to network-level optimality under uncertainty provides the
foundation for the present study.

To resolve the conflict between rigid node-based planning
and global network optimality, this paper proposes a traffic
network-aware energy management framework that integrates
trip-specific optimal control with long-run network statistics.
The main contributions of this study are summarized as
follows:

• Integration of Local Control and Global Optimality:
This study presents a new perspective on EMS design
by embedding the long-run average cost, derived from
the stochastic transition probabilities of a traffic network,
into the terminal cost of a finite-horizon optimal control
problem. This formulation mathematically bridges the
gap between trip-specific efficiency and network-level
optimality.

• Realization of Adaptive Target SOC: It is revealed that
the statistical “value” of each node in a traffic network
can be used to determine an adaptive target SOC. Unlike
conventional SOC node planning that relies on fixed
setpoints, the proposed approach allows the vehicle to
autonomously adjust its energy state to remain optimal
for both current and unpredicted future links.

• Validation of Network-Aware Efficiency: A real-time
integrated strategy is proposed and validated through
simulations in a stochastic virtual traffic network. The
results reveal that incorporating network-level statisti-
cal awareness provides a significant performance buffer
against limited prediction horizons, achieving a maximum
efficiency improvement of 11% over traditional trip-
specific methods.

The remainder of this paper is organized as follows. Section
II presents the conventional trip-specific strategy as preliminar-
ies for this study. Section III introduces the proposed integrated
energy management strategy, while Section IV describes the
numerical solvers for both conventional and proposed strate-
gies. Validation results are reported in Section V, and finally,
Section VI concludes the paper with an outlook on future
work.

II. PRELIMINARIES

A. Trip-Specific Strategy

A trip is represented by a sequence of power demands
{wt}T−1

t=0 , where the subscript t denotes the time step from
the start (t = 0) to the end (t = T ) of the journey.

For a given trip, the trip-specific energy management prob-
lem for a FCEV is formulated as follows:

min
u0,...,uT−1

T−1∑
t=0

ṁfc(ut) (1a)

subject to
xt+1 = xt + f(xt, ut, wt), (1b)
u ≤ ut ≤ u, (1c)
x ≤ xt ≤ x, (1d)
xT = x∗, (1e)

where ut is the control input (i.e., fuel-cell power); ṁfc is
the fuel consumption rate; xt is the state (i.e., battery state
of charge (SOC)); f(·) is the SOC dynamics model whose
expression is given in [9]; u and u are the control limits; x
and x are the state constraints; and x∗ is the fixed target SOC
at the end of the trip.

As a trajectory optimization problem, solving (1) requires
the entire future power demand trajectory {wt}T−1

t=0 in advance.
While a typical trip duration spans tens of minutes, the reliable
prediction horizon in practical applications is often limited to
tens of seconds. Consequently, existing PEM strategies based
on such short-term horizons fail to achieve global optimality.

Furthermore, even with a perfect long-term prediction, the
hard constraint in (1e)—which forces the state xT to a fixed
target x∗—can be suboptimal. This rigidity prevents the vehi-
cle from adaptively preserving or depleting energy in response
to the stochastic nature of the subsequent, unpredicted traffic
network.

III. PROPOSED ENERGY MANAGEMENT STRATEGY

This section introduces a hierarchical framework that
bridges local trip-specific control and global network opti-
mality. We first present the long-run average strategy derived
from the traffic network statistics, followed by the integrated
strategy that embeds this long-run cost into a finite-horizon
optimization.

A. Long-Run Average Strategy

To account for the infinite-horizon operation within a
stochastic traffic network, the energy management problem is
formulated as a discounted cost minimization:

min
π

Jπ(x0) = lim
T→∞

E

[
T−1∑
t=0

γtṁfc(π(xt))

]
(2a)

subject to
xt+1 = xt + f(xt, π(xt), wt), (2b)
u ≤ π(xt) ≤ u, (2c)
x ≤ xt ≤ x, (2d)

where π represents the control policy optimized for the traffic
network and γ ∈ (0, 1) is the discount factor. Notably, the
final SOC constraint (1e) is omitted in this formulation, as the
infinite-horizon perspective naturally evaluates the “value” of



each SOC state x in terms of long-term fuel economy rather
than aiming for a specific terminal setpoint.

The resulting cost-to-go, Jπ(x), represents the expected fuel
consumption from state x under the optimal network policy.

B. Integrated Strategy: Trip-Specific Control with Long-Run
Awareness

Leveraging the long-run cost Jπ(x) obtained from (2), we
propose an integrated energy management strategy. This strat-
egy optimizes the immediate trip while remaining cognizant
of future network-level efficiency by incorporating Jπ(x) as a
terminal cost:

min
u0,...,uT−1

T−1∑
t=0

ṁfc(ut) + Jπ(xT ) (3a)

subject to
xt+1 = xt + f(xt, ut, wt), (3b)
u ≤ ut ≤ u, (3c)
x ≤ xt ≤ x. (3d)

In this formulation, the hard constraint xT = x∗ is replaced
by the terminal cost Jπ(xT ).

Unlike the conventional trip-specific problem (1), the ter-
minal SOC xT is adaptively optimized; it is determined such
that the sum of the immediate fuel consumption and the long-
term expected cost is minimized. Consequently, the vehicle can
“invest” SOC during the current trip if the long-run network
value at xT justifies the expenditure, thereby ensuring global
optimality across continuous operations.

IV. SOLVERS

Problems (1)–(3) are trajectory optimization problems de-
fined over multiple time steps. In particular, Problem (2) is
formulated over an infinite horizon within a stochastic traffic
network, which renders direct solution intractable.

To improve computational tractability while preserving op-
timality, we adopt a link-level reformulation based on the
approach in [10]. This reformulation transforms the time-
domain control problem into an equivalent link-wise op-
timization problem using Pontryagin’s Minimum Principle
(PMP). Under the convexity of the fuel consumption model
and the lumped energy representation within each link, the
reformulated problem is theoretically equivalent to the original
time-level formulation.

A. Link-Level Representation

A road link is defined as a continuous road segment con-
necting two nodes at which significant speed transitions occur
(e.g., intersections, highway ramps, bridges, or tunnels). The
link index k denotes the link step, where each link contains
multiple time steps t.

Let qk denote the link at step k, and xk denote the SOC
state when exiting link qk. The trajectory information within
link qk is aggregated into four lumped parameters:

• E+(qk): positive energy demand,
• E−(qk): negative energy demand,

• ∆t(qk): total duration,
• ∆t+(qk): positive power duration.

Applying PMP to the original time-level optimal control
problem yields that the optimal fuel-cell power within each
link can be characterized by a constant costate λk. Under
standard convexity assumptions on the fuel consumption func-
tion, the resulting link-level cost becomes quadratic in λk.
Accordingly, the SOC dynamics can be reformulated as

xk = xk−1 + g(λk, E
+(qk), E

−(qk),∆t(qk),∆t+(qk)), (4)

where g(·) denotes the lumped SOC update model derived
from the original time-domain dynamics.

B. Trip-Specific Strategy

Based on the link-level representation, Problem (1) is refor-
mulated as

min
λ1,...,λN

N∑
k=1

∆t+(qk)λ
2
k (5a)

s.t. xk = xk−1 + g(λk, · · · ), (5b)

λ ≤ λk ≤ λ, (5c)
x ≤ xk ≤ x, (5d)
xN = x∗. (5e)

For a fixed terminal SOC x∗, Problem (5) is a convex
quadratic program (QP) in {λk}Nk=1. It is solved using MAT-
LAB’s quadprog function. The computational complexity
scales linearly with the number of links N .

C. Long-Run Average Strategy

In the link-level formulation, the infinite-horizon problem
(2) becomes a constrained Markov Decision Process (MDP)
defined over the augmented state space (x, q).

The reformulated problem is

min
π

Jπ(x0, q1) = lim
N→∞

E

[
N∑

k=1

γk−1∆t+(qk) (π(xk−1, qk))
2

]
(6a)

s.t. P (qk+1 = j | qk = i) = pij , (6b)
xk = xk−1 + g(π(xk−1, qk), · · · ), (6c)

λ ≤ π(xk−1, qk) ≤ λ, (6d)
x ≤ xk ≤ x. (6e)

The state space is discretized over the SOC grid and finite
link set. The policy π(x, q) and optimal cost-to-go J(x, q) are
obtained using value iteration (VI). Convergence is declared
when the maximum Bellman residual falls below a predefined
tolerance.



D. Integrated Trip-Specific and Long-Run Strategy

The integrated problem (3) is reformulated as

min
λ1,...,λN ,x∗

N∑
k=1

∆t+(qk)λ
2
k + EqN+1|qN [Jπ(x

∗, qN+1)]

(7a)
s.t. xk = xk−1 + g(λk, · · · ), (7b)

λ ≤ λk ≤ λ, (7c)
x ≤ xk ≤ x, (7d)
xN = x∗. (7e)

Compared to Problem (5), the terminal SOC x∗ is treated as
an optimization variable. For a fixed x∗, the problem is convex
in {λk} and solved as a QP. Therefore, the overall problem
reduces to a one-dimensional search over x∗.

Specifically, x∗ is discretized over the admissible SOC grid.
For each candidate x∗, Problem (5) is solved to obtain the
optimal {λk} and corresponding trip-level cost. The expected
terminal cost is then evaluated using the long-run cost-to-go
Jπ . The x∗ that minimizes the combined cost is selected as
the optimal adaptive terminal SOC.

V. VALIDATION

The proposed integrated strategy was evaluated in a virtual
traffic network and compared against the trip-specific strategy
and the long-run average strategy.

The virtual traffic network consists of nine nodes and twenty
four directed links. The transition probabilities pij and the
link-level parameters are illustrated in Fig. 1(a) and Fig. 1(b),
respectively. The link parameters include the positive and
negative energy demands, total duration, and positive power
duration.

To evaluate statistical performance, 100 independent travel
sequences were generated. Each travel starts from node 5 and
evolves for Ntravel = 1000 links according to the transition
probabilities pij . Each long travel is partitioned into multiple
finite trips, each consisting of N links. The parameter N rep-
resents the prediction horizon of the trip-specific component
and is varied as N = 1, 2, 5, 10, 15, and 20 to investigate the
effect of the finite-horizon length.

The target FCEV model is based on the specifications of
the Hyundai NEXO. The SOC bounds were set to x = 0.4
and x = 0.7, and the initial SOC was set to x0 = 0.55. For
the trip-specific strategy, the terminal constraint was set to
x∗ = 0.55.

For fair comparison, all three strategies are evaluated using
the same total cost metric:

Jtotal =

Ntravel∑
k=1

∆t+(qk)λ
2
k. (8)

Although each strategy is derived from different optimization
formulations, their performance is assessed using this unified
cost definition.

The total costs of the three strategies are shown in Fig. 2(a).
The trip-specific strategy exhibits strong dependence on the

Transition probability (pij)
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Fig. 1. Virtual traffic network used in the validation: (a) link transition
probabilities pij and (b) link-level parameters including energy demands and
travel durations.

prediction horizon N . When N is small, the limited look-
ahead capability leads to suboptimal decisions and the highest
total cost. As N increases, performance improves due to richer
trip information.

In contrast, the proposed integrated strategy consistently
outperforms the trip-specific strategy across all tested values of
N . The improvement is particularly significant for short hori-
zons, achieving a maximum cost reduction of approximately
11% at N = 1, as shown in Fig. 2(b). This result demonstrates
that embedding long-run network information into the terminal
cost effectively compensates for limited prediction horizons.

The long-run average strategy outperforms the trip-specific
strategy when N = 1, 2, 5, and 10, indicating that network-
level statistical awareness alone can enhance performance
when trip information is scarce. However, for larger N , the
trip-specific strategy slightly surpasses the long-run average
strategy because detailed trip-level information becomes dom-
inant in the optimization.

In practical scenarios, accurately predicting more than 10
future links is technically challenging. Therefore, the long-run
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Fig. 2. Validation results in the virtual traffic network: (a) total cost
averaged over 100 independent travels and (b) relative cost improvement of
the integrated strategy over the trip-specific strategy as a function of the trip
length N .

perspective provides meaningful robustness against prediction
uncertainty, and the integrated strategy further improves per-
formance by combining both perspectives.

Figure 3 presents the state and control trajectories for a
representative travel scenario with N = 5. The trip-specific
strategy tightly regulates the SOC around the fixed terminal
target x∗ = 0.55, resulting in clustered state trajectories. In
contrast, both the long-run average strategy and the integrated
strategy allow the SOC to utilize a broader admissible range.

Notably, the integrated strategy adaptively adjusts its ter-
minal SOC target at each trip segment based on the long-
run cost-to-go. This adaptive behavior enables the vehicle to
temporarily “invest” or “reserve” energy depending on the
statistical value of the subsequent network links.

This characteristic fundamentally distinguishes the proposed
approach from conventional trip-specific strategies and even
advanced SOC node planning methods, which typically rely
on predetermined SOC references derived solely from trip-
level information.

VI. CONCLUSION

This paper proposed a traffic network-aware energy man-
agement strategy for FCEVs by integrating finite-horizon trip-
specific optimal control with long-run network-level opti-
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Fig. 3. State and control trajectories of the three strategies for a representative
travel scenario with N = 5.

mality. Unlike conventional approaches that impose a fixed
terminal SOC target, the proposed framework embeds the
long-run cost-to-go derived from stochastic traffic transitions
into the terminal cost of the finite-horizon problem. This
formulation enables adaptive terminal SOC selection, thereby
bridging local trip efficiency and global network optimality.

Simulation results in a virtual traffic network demonstrated
that the proposed integrated strategy consistently outperforms
both the trip-specific and long-run average strategies, with
performance gains of up to 11% under short prediction
horizons. The results highlight that incorporating network-
level statistical awareness significantly improves robustness
against limited prediction horizons and enhances long-term
energy efficiency in stochastic driving environments. Future
work will include validation on realistic traffic network data,
robustness analysis under prediction errors in finite-horizon
parameters, and extension of the framework to time-varying
traffic networks where the long-run average cost must be
updated adaptively.
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